# Appendix H

Environmental test pit logs







### **TP01**

SHEET 1 OF 1

13/5/15

13/5/15

Client: Sydney Water Date Commenced: Project: Date Completed:

Test Pit Location: Sydney Water Ashfield Reservoir, 165-169 Holden St, Ashbury NSW Recorded By: DR Project Number: 2201679B Log Checked By: MW

Excavation Method: Excavator Surface RL:

| = | / P   | :4 I C   |              |        |                |              | P1 1122 4 1 1                                                                                                                                                                                                                                                  | _      |                                |                  |                                                                                                                              |
|---|-------|----------|--------------|--------|----------------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------------------------------|------------------|------------------------------------------------------------------------------------------------------------------------------|
| T |       |          | ormatio      |        | <u>-</u>       |              | Field Material                                                                                                                                                                                                                                                 |        |                                | 1 40             |                                                                                                                              |
|   | RL(m) | DEPTH(m) | HELD 3       | SAMPLE | GRAPHIC LOG on | USC SYMBOL 0 | 7  SOIL/ROCK MATERIAL FIELD DESCRIPTION (SOIL NAME; plasticity/grain size, colour, particle shape, secondary components, minor constituents, moisture, relative density/consistency) (ROCK NAME; grain size, colour, weathering, strength, minor constituents) |        | 9 RELATIVE DENSITY /CONSISTENC | VD<br>D<br>ETROM | STRUCTURE AND ADDITIONAL OBSERVATIONS (Defects - depth, type, orientation spacing, planarity, roughness, thickness, coating) |
|   |       | 0.05     | PID=0        | J&B    |                |              | ASPHALT: poor condition FILL: Fly ash; light grey, white specks                                                                                                                                                                                                | D<br>M | SY ST                          | 1 722            | TP0_0.05_AS No visible ACM from 10L sieve                                                                                    |
|   | (     | 0.20 —   | \_ppm_       | 1      |                |              | FILL: Sand; medium grained, yellow, sandstone                                                                                                                                                                                                                  | M      |                                |                  | No visible / OW Hoth Top Sieve                                                                                               |
|   | (     | 0.37 ——  |              |        |                |              | gravels.  CLAY: medium plasticity, brown, minor gravel, plant                                                                                                                                                                                                  | M      |                                |                  |                                                                                                                              |
|   | ·     | 0.50     | PID=0.1      | J&B    | /              |              | As above but red/brown, minor ironstone.                                                                                                                                                                                                                       | M      |                                |                  | TP0_0.5_AS                                                                                                                   |
|   |       | _        | ррш          |        |                |              |                                                                                                                                                                                                                                                                |        |                                |                  |                                                                                                                              |
|   |       | 1-       | PID=0<br>ppm | J&E    |                |              |                                                                                                                                                                                                                                                                |        |                                |                  | TP0_1.0_AS                                                                                                                   |
|   |       | 1.20 — — |              |        |                |              | As above, grey mottles increasing with depth, orange clay inclusions.                                                                                                                                                                                          | M      |                                |                  |                                                                                                                              |
|   |       | 1.50     |              |        |                |              | SHALE: extremely weathered, grey.                                                                                                                                                                                                                              | M      |                                |                  |                                                                                                                              |
|   |       |          |              |        |                |              |                                                                                                                                                                                                                                                                |        |                                |                  |                                                                                                                              |
|   |       |          |              |        |                |              | END OF TEST PIT AT 1.80 m                                                                                                                                                                                                                                      |        |                                |                  |                                                                                                                              |
|   |       | 2-       |              |        |                |              |                                                                                                                                                                                                                                                                |        |                                |                  |                                                                                                                              |
|   |       | _        |              |        |                |              |                                                                                                                                                                                                                                                                |        |                                |                  |                                                                                                                              |
|   |       | -        |              |        |                |              |                                                                                                                                                                                                                                                                |        |                                |                  |                                                                                                                              |
|   |       | -        |              |        |                |              |                                                                                                                                                                                                                                                                |        |                                |                  |                                                                                                                              |
|   |       | -        |              |        |                |              |                                                                                                                                                                                                                                                                |        |                                |                  |                                                                                                                              |
|   |       | 3-       |              |        |                |              |                                                                                                                                                                                                                                                                |        |                                |                  |                                                                                                                              |





**TP02** 

SHEET 1 OF 1

14/5/15

Client: Sydney Water Date Commenced: Project: Date Completed:

Date Completed: 14/5/15
W Recorded By: DR

Test Pit Location: Sydney Water Ashfield Reservoir, 165-169 Holden St, Ashbury NSW Project Number: 2201679B

Log Checked By: MW

Excavation Method: Excavator Surface RL:

Co-ords: **E 326588 N 6247493 MGA 56** 

| _       |       | <b>-</b> 1 |              |            | _                   |              |                                                                                                                                                                                                                                                             |          | -ords:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     | 6588 N 6247493 MGA 56                                                                                                         |
|---------|-------|------------|--------------|------------|---------------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-------------------------------------------------------------------------------------------------------------------------------|
| 1       | est   | Pit Info   | ormatic<br>3 | <b>n</b> 4 | 5                   | 6            | Field Material                                                                                                                                                                                                                                              | Des      | cription<br>9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10                  | 11                                                                                                                            |
| WATER - | RL(m) | DEPTH(m)   | FIELD        | SAMPLE     | GRAPHIC LOG         | USC SYMBOL o | SOIL/ROCK MATERIAL FIELD DESCRIPTION (SOIL NAME; plasticity/grain size, colour, particle shape, secondary components, minor constituents, moisture, relative density/consistency) (ROCK NAME; grain size, colour, weathering, strength, minor constituents) | MOISTURE | RELATIVE DENSITY /CONSISTENCY AND LS | D<br>ETROMETER<br>) | STRUCTURE AND ADDITIONAL OBSERVATIONS (Defects - depth, type, orientation, spacing, planarity, roughness, thickness, coating) |
|         |       | -          | PID=0<br>ppm | J&B        |                     |              | FILL: Silty clay, low plasticity, brown, subangular gravels, plant roots.                                                                                                                                                                                   | M        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     | No visible ACM from 10L sieve                                                                                                 |
|         |       | 0.50       | PID=0<br>ppm | J&B        |                     |              | FILL: Gravelly clay, low/medium plasticity, grey, sandstone gravels and cobbles.                                                                                                                                                                            | M        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     | TP0_0.5_AS                                                                                                                    |
|         |       | 1 -        | PID=0<br>ppm | J&B        |                     |              | CLAY: medium plasticity, red, grey and brown mottles, minor red mottles, increasing grey mottles with depth.                                                                                                                                                | M/D      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     | TP0_1.0_AS                                                                                                                    |
|         |       | 1.40 —     |              |            |                     |              | As above but grey with red mottles and ironstone gravels.                                                                                                                                                                                                   | M/D      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |                                                                                                                               |
|         |       | 2-         |              |            |                     |              | END OF TEST PIT AT 1.50 m                                                                                                                                                                                                                                   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |                                                                                                                               |
|         |       | 3-         |              | 1          | <sup>-</sup> his te | st pit       | log should be read in conjunction with Parsons Brinckerh                                                                                                                                                                                                    | off's a  | accompanyi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ing standa          | ard notes.                                                                                                                    |





**TP03** 

SHEET 1 OF 1

14/5/15

14/5/15

Client: Sydney Water Date Commenced: Project: Date Completed:

Test Pit Location: Sydney Water Ashfield Reservoir, 165-169 Holden St, Ashbury NSW Recorded By: DR Project Number: 2201679B Log Checked By: MW

Excavation Method: Excavator Surface RL:

Co-ords: **E 326599 N 6247495 MGA 56** 

| Ŧ       | est   | Pit Info | ormatic      | n      |             |            | Field Material                                                                                                                                                                                                                                              | Des      | cription                      |                    |                                                                                                                               |
|---------|-------|----------|--------------|--------|-------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------------------------|--------------------|-------------------------------------------------------------------------------------------------------------------------------|
| 1       | JJ1   | 2        | 3            | 4      | 5           | 6          | 7                                                                                                                                                                                                                                                           | 8        | a                             | 10                 | 11                                                                                                                            |
| NA I EN | RL(m) | DEPTH(m) | FIELD        | SAMPLE | GRAPHIC LOG | USC SYMBOL | SOIL/ROCK MATERIAL FIELD DESCRIPTION (SOIL NAME; plasticity/grain size, colour, particle shape, secondary components, minor constituents, moisture, relative density/consistency) (ROCK NAME; grain size, colour, weathering, strength, minor constituents) | MOISTURE | RELATIVE DENSITY /CONSISTENCY | PENETROMETER (KPa) | STRUCTURE AND ADDITIONAL OBSERVATIONS (Defects - depth, type, orientation, spacing, planarity, roughness, thickness, coating) |
|         |       | _        | PID=0<br>ppm | J&B    |             |            | FILL: Silty clay, low plasticity, brown, subangular gravels, plant roots.                                                                                                                                                                                   | M        |                               |                    | No visible ACM from 10L sieve                                                                                                 |
|         |       | 0.30 —   | PID=0        | J&B    |             |            | CLAY: medium plasticity, red, grey and brown mottles, minor red mottles, increasing grey mottles with depth.                                                                                                                                                | M/D      |                               |                    | TP03_0.5_AS                                                                                                                   |
|         |       | 0.80     | ppm          | 300    |             |            |                                                                                                                                                                                                                                                             |          |                               |                    |                                                                                                                               |
|         |       | 1        |              |        |             |            | As above but grey with red and orange mottles and ironstone gravels.  END OF TEST PIT AT 1.00 m                                                                                                                                                             | M/D      |                               |                    |                                                                                                                               |
|         |       | -        |              |        |             |            |                                                                                                                                                                                                                                                             |          |                               |                    |                                                                                                                               |
|         |       | -        |              |        |             |            |                                                                                                                                                                                                                                                             |          |                               |                    |                                                                                                                               |
|         |       | =        |              |        |             |            |                                                                                                                                                                                                                                                             |          |                               |                    |                                                                                                                               |
|         |       | -        |              |        |             |            |                                                                                                                                                                                                                                                             |          |                               |                    |                                                                                                                               |
|         |       | 2-       |              |        |             |            |                                                                                                                                                                                                                                                             |          |                               |                    |                                                                                                                               |
|         |       | -        |              |        |             |            |                                                                                                                                                                                                                                                             |          |                               |                    |                                                                                                                               |
|         |       | _        |              |        |             |            |                                                                                                                                                                                                                                                             |          |                               |                    |                                                                                                                               |
|         |       | -        |              |        |             |            |                                                                                                                                                                                                                                                             |          |                               |                    |                                                                                                                               |
|         |       | 3-       |              |        |             |            |                                                                                                                                                                                                                                                             |          |                               |                    |                                                                                                                               |

This test pit log should be read in conjunction with Parsons Brinckerhoff's accompanying standard notes.





Excavation Method:

## TEST PIT ENVIRONMENTAL LOG

**TP04** 

SHEET 1 OF 1

13/5/15

13/5/15

DR

MW

Client: Sydney Water

**Excavator** 

Project:

Sydney Water Ashfield Reservoir, 165-169 Holden St, Ashbury NSW

Test Pit Location: Sydney W Project Number: 2201679B

Log Checked By:
Surface RL:

Co-ords: **E 326549 N 6247487 MGA 56** 

Date Commenced:

Date Completed:

Recorded By:

| Test           | t Pit Infe |                |        |                 |            | Field Material I                                                                                                                                                                                                                                            |          | crip         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n                    |                            |                                                                                                                               |
|----------------|------------|----------------|--------|-----------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| 1              | 2          | 3              | 4      | 5               | 6          | 7                                                                                                                                                                                                                                                           | 8        |              | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      | 10                         | 11                                                                                                                            |
| WAIEK<br>RL(m) | DEPTH(m)   | FIELD          | SAMPLE | GRAPHIC LOG     | USC SYMBOL | SOIL/ROCK MATERIAL FIELD DESCRIPTION (SOIL NAME; plasticity/grain size, colour, particle shape, secondary components, minor constituents, moisture, relative density/consistency) (ROCK NAME; grain size, colour, weathering, strength, minor constituents) | MOISTURE | FB<br> <br>  | ELATIVENSITE SESTEMBLE SES | ۵ <u>۷</u>           | HAND<br>PENETROMETER (KPa) | STRUCTURE AND ADDITIONAL OBSERVATIONS (Defects - depth, type, orientation, spacing, planarity, roughness, thickness, coating) |
|                | 0.05       | PID=0<br>ppm   | J&B    |                 |            | ASPHALT FILL: Clayey gravel, subangular, grey, medium grained sands.                                                                                                                                                                                        | M        | <br> -<br> - |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                            | TP04_0.05_AS No visible ACM from 10L sieve                                                                                    |
|                | 0.20       | PID=0.1<br>ppm | J&B    |                 | × //       | CLAY: medium plasticity, red, grey mottles, minor ironstone, increasing grey mottles with depth.                                                                                                                                                            | M        |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                            | —TP04_0,5_AS                                                                                                                  |
|                | 1-         | PID=0<br>ppm   | J&B    |                 |            |                                                                                                                                                                                                                                                             |          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                            | ──TP04_1.0_AS                                                                                                                 |
|                | 1.20       |                |        | /<br>==-<br>==- | 1          | SHALE: extremely weathered, grey.                                                                                                                                                                                                                           | М        | -            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                            |                                                                                                                               |
| $\top$         |            |                |        |                 |            | END OF TEST PIT AT 1.30 m                                                                                                                                                                                                                                   |          | i            | $\square$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      |                            |                                                                                                                               |
|                |            |                |        |                 |            |                                                                                                                                                                                                                                                             |          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                            |                                                                                                                               |
|                | -          |                |        |                 |            |                                                                                                                                                                                                                                                             |          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 1                  |                            |                                                                                                                               |
|                | 3-         |                |        |                 |            |                                                                                                                                                                                                                                                             |          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u><br> -<br> - |                            |                                                                                                                               |





**TP05** 

SHEET 1 OF 1

Client: Sydney Water
Project:

Date Commenced:
Date Completed:

14/5/15 14/5/15

Test Pit Location:
Project Number:

Sydney Water Ashfield Reservoir, 165-169 Holden St, Ashbury NSW 2201679B

Recorded By: Log Checked By: DR MW

Excavation Method: Excavator

Surface RL:

Co-ords: **E 32656** 

E 326564 N 6247496 MGA 56

| ſ                                                                                                                                                 | Т     | est P | it Info                  | ormatic      | n      |             |            | Field Material I                                                                                                                                                                                                                                            | Des     | cription                                                             |            |                                                                                                                               |
|---------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|--------------------------|--------------|--------|-------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------------------------------------------------------------------|------------|-------------------------------------------------------------------------------------------------------------------------------|
| t                                                                                                                                                 | 1     | 2     |                          | 3            | 4      | 5           | 6          | 7                                                                                                                                                                                                                                                           | 8       | 9                                                                    | 10         | 11                                                                                                                            |
|                                                                                                                                                   | WATER | RL(m) | DEPTH(m)                 | FIELD        | SAMPLE | GRAPHIC LOG | USC SYMBOL | SOIL/ROCK MATERIAL FIELD DESCRIPTION (SOIL NAME; plasticity/grain size, colour, particle shape, secondary components, minor constituents, moisture, relative density/consistency) (ROCK NAME; grain size, colour, weathering, strength, minor constituents) |         | RELATIVE DENSITY /CONSISTENCY  LS  LS  LS  LS  LS  LS  LS  LS  LS  L | ETROM      | STRUCTURE AND ADDITIONAL OBSERVATIONS (Defects - depth, type, orientation, spacing, planarity, roughness, thickness, coating) |
|                                                                                                                                                   |       |       |                          | PID=0<br>ppm | J&B    |             |            | FILL: Gravelly clay, low/medium plasticity, brown, shale gravels, plant roots, minor red clay.                                                                                                                                                              | D       |                                                                      |            | No visible ACM from 10L sieve                                                                                                 |
|                                                                                                                                                   |       | C     | ).20 — <del>-</del><br>- |              |        |             |            | FILL: Gravel, subangular basalt <2cm.                                                                                                                                                                                                                       | D       |                                                                      |            | Redundant 100mm PVC pipe encountered at 0,2m BGL.                                                                             |
|                                                                                                                                                   |       |       |                          | PID=0<br>ppm | J&B    |             |            |                                                                                                                                                                                                                                                             |         |                                                                      |            | TP05_0.5_AS                                                                                                                   |
| YH2006.GDT 29/5/15                                                                                                                                |       |       | -                        | PP           |        |             |            | CLAY: Medium plasticity, grey, red/orange mottles, minor ironstone gravels, increasing grey mottles with depth.                                                                                                                                             | M/D     |                                                                      |            |                                                                                                                               |
| (2).GPJ                                                                                                                                           |       | 1     | 1 -                      | PID=0<br>ppm | J&B    |             |            | SHALE: extremely weathered, grey.                                                                                                                                                                                                                           |         |                                                                      |            | TP05_1.0_AS                                                                                                                   |
|                                                                                                                                                   |       |       | _                        |              |        |             |            | END OF TEST PIT AT 1.20 m                                                                                                                                                                                                                                   | M/D     |                                                                      |            |                                                                                                                               |
| 🕏 Parsons Brinckerhoff Australia Pty Ltd. Version 5.1 ENVIRONMENTAL TEST PIT FIELD LOG TP OR HA OR SHALLOW BH ASHFIELD (2),GPJ YH2006.GDT 29/5/15 |       |       | -<br>-<br>2-<br>-<br>-   |              |        |             |            |                                                                                                                                                                                                                                                             |         |                                                                      |            |                                                                                                                               |
| arsons                                                                                                                                            |       |       |                          |              |        | Thin to     | et nit     | log should be read in conjugation with December Drive Leads                                                                                                                                                                                                 | offic - | ecompany                                                             | ing step d | and notice                                                                                                                    |
| ٥                                                                                                                                                 |       |       |                          |              |        | ı nıs te:   | st pit     | log should be read in conjunction with Parsons Brinckerho                                                                                                                                                                                                   | nt S a  | ccompany                                                             | ing stand  | aru notes.                                                                                                                    |





Test Pit Location:

Project Number:

### TEST PIT ENVIRONMENTAL LOG

**TP06** 

SHEET 1 OF 1

14/5/15

14/5/15

DR

MW

Client: Sydney Water

Project:

Sydney Water Ashfield Reservoir, 165-169 Holden St, Ashbury NSW

2201679B

Date Completed: Holden St, Ashbury NSW Recorded By:

Log Checked By:

Excavation Method: Excavator Surface RL:

Co-ords: **E 326592 N 6247484 MGA 56** 

Date Commenced:

| Test           | t Pit Info | ormatio      | n      |             |            | Field Material                                                                                                                                                                                                                                              | Des      | cription                                  |                                                                                                                                           |
|----------------|------------|--------------|--------|-------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| 1              | 2          | 3            | 4      | 5           | 6          | 7                                                                                                                                                                                                                                                           | 8        | 9 10                                      | 11                                                                                                                                        |
| WAIER<br>RL(m) | DEPTH(m)   | FIELD        | SAMPLE | GRAPHIC LOG | USC SYMBOL | SOIL/ROCK MATERIAL FIELD DESCRIPTION (SOIL NAME; plasticity/grain size, colour, particle shape, secondary components, minor constituents, moisture, relative density/consistency) (ROCK NAME; grain size, colour, weathering, strength, minor constituents) | MOISTURE | W C S T C S C C C C C C C C C C C C C C C | STRUCTURE AND ADDITIONAL<br>OBSERVATIONS<br>(Defects - depth, type, orientation,<br>spacing, planarity, roughness,<br>thickness, coating) |
|                | 0.05       | PID=0<br>ppm | J&B    |             |            | ASPHALT FILL: Gravelly clay, low plasticity, grey, subangular basalt gravels.                                                                                                                                                                               | M/D Q    |                                           | TP06_0.05_AS Dup1 and Dup1a<br>No visible ACM from 10L sieve                                                                              |
|                | 0.20       |              |        | XXXX        |            | ASPHALT                                                                                                                                                                                                                                                     | D        |                                           |                                                                                                                                           |
|                | 0.25 ——    |              |        |             |            | FILL: Sandstone cobbles, white, matrix of sand, subangular basalt, fine sand grains, clinker, slag                                                                                                                                                          | M/D      |                                           | TP06_0.45_AS                                                                                                                              |
|                |            | PID=0<br>ppm | J&B    | $\bowtie$   |            |                                                                                                                                                                                                                                                             |          |                                           | 1F00_0.45_A3                                                                                                                              |
|                | 0.55 —     | ppiii        |        |             |            | CLAY: Medium plasticity, red, brown mottles, minor ironstone, increasing grey mottles with depth.                                                                                                                                                           | M/D      |                                           |                                                                                                                                           |
|                | 0.90 —     | PID=0        |        |             |            | As above, grey mottles increasing with depth, orange clay inclusions.                                                                                                                                                                                       | M/D      |                                           | TP06_1.0_AS                                                                                                                               |
|                |            | ppm          | J&B    |             |            | END OF TEST PIT AT 1.10 m                                                                                                                                                                                                                                   |          |                                           |                                                                                                                                           |
|                | 2-         |              |        |             |            |                                                                                                                                                                                                                                                             |          |                                           |                                                                                                                                           |
|                | 3-         |              |        |             |            |                                                                                                                                                                                                                                                             |          |                                           |                                                                                                                                           |

This test pit log should be read in conjunction with Parsons Brinckerhoff's accompanying standard notes.





### **TP07**

SHEET 1 OF 1

Client: Sydney Water Date Commenced: 14/5/15
Project: Date Completed: 14/5/15

Test Pit Location: Sydney Water Ashfield Reservoir, 165-169 Holden St, Ashbury NSW Recorded By: DR Project Number: 2201679B Log Checked By: MW

Excavation Method: Excavator Surface RL:

Co-ords: **E 326610 N 6247468 MGA 56** 

| Test  | Pit Info | ormatic      | n      | l           |                                       | Field Material                                                                                                                                                                                                                                                       | Des      | cription                      |                             |                                                                                                                                           |
|-------|----------|--------------|--------|-------------|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------------------------|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
|       | 2        | 3            | 4      | 5           | 6                                     | 7                                                                                                                                                                                                                                                                    | 8        | a                             | 10                          | 11                                                                                                                                        |
| RL(m) | DEPTH(m) | FIELD        | SAMPLE | GRAPHIC LOG | USC SYMBOL                            | SOIL/ROCK MATERIAL FIELD DESCRIPTION (SOIL NAME; plasticity/grain size, colour, particle shape, secondary components, minor constituents, moisture, relative density/consistency) (ROCK NAME; grain size, colour, weathering, strength, minor constituents)  ASPHALT | MOISTURE | RELATIVE DENSITY /CONSISTENCY | HAND<br>PENETROMETER ((RPa) | STRUCTURE AND ADDITIONAL<br>OBSERVATIONS<br>(Defects - depth, type, orientation,<br>spacing, planarity, roughness,<br>thickness, coating) |
|       | 0.05 ——  | PID=0<br>ppm | J&B    |             | × × × × × × × × × × × × × × × × × × × | FILL: Gravelly clay, low plasticity, yellow/brown, subangular basalt gravels, medium grained sand.                                                                                                                                                                   | M        |                               |                             | TP07_0.05_AS, Dup2_AS and Dup2a_AS No visible ACM from 10L sieve                                                                          |
|       | 0.35     | PID=0<br>ppm | J&B    |             | ×                                     | CLAY: medium plasticity, red, brown mottles, minor ironstone, plant roots, increasing grey mottles with depth.                                                                                                                                                       | M/D      |                               | -                           | TP07_0.5_AS                                                                                                                               |
|       | 0.90     |              |        |             |                                       | As above but grey, ironstone inclusions.                                                                                                                                                                                                                             |          |                               |                             |                                                                                                                                           |
| +     | 1-       |              |        |             |                                       | END OF TEST PIT AT 0.95 m                                                                                                                                                                                                                                            | Q        |                               |                             |                                                                                                                                           |
|       |          |              |        |             |                                       |                                                                                                                                                                                                                                                                      |          |                               |                             |                                                                                                                                           |
|       | -        |              |        |             |                                       |                                                                                                                                                                                                                                                                      |          |                               |                             |                                                                                                                                           |
|       | 3-       |              |        |             |                                       |                                                                                                                                                                                                                                                                      |          |                               |                             |                                                                                                                                           |





**TP08** 

SHEET 1 OF 1

14/5/15

Client: Sydney Water Date Commenced: Project: Date Completed:

Project:
Test Pit Location:
Project Number:

Sydney Water Ashfield Reservoir, 165-169 Holden St, Ashbury NSW
Project Number:

Date Completed:
Recorded By:
DR
Log Checked By:
MW

Excavation Method: Excavator Surface RL:

Co-ords: **E 326564 N 6247473 MGA 56** 

| - | est F | Pit Info |               |                      |             |            | Field Material                                                                                                                                                                                                         |          |   |                                   | 1        |                            |                                                                                                                                           |
|---|-------|----------|---------------|----------------------|-------------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---|-----------------------------------|----------|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| 1 |       | 2        | 3             | 4                    | 5           | 6          | 7 SOIL/ROCK MATERIAL FIELD DESCRIPTION                                                                                                                                                                                 | 8        |   | 9<br>ELATIVI<br>ENSITY<br>ISISTER | <u> </u> | 10<br>EB                   | 11                                                                                                                                        |
| i | RL(m) | DEPTH(m) | FIELD<br>TEST | SAMPLE               | GRAPHIC LOG | USC SYMBOL | (SOIL NAME; plasticity/grain size, colour, particle shape, secondary components, minor constituents, moisture, relative density/consistency) (ROCK NAME; grain size, colour, weathering, strength, minor constituents) | MOISTURE |   | _₽.                               | CY ON H  | HAND<br>PENETROMETER (KPa) | STRUCTURE AND ADDITIONAL<br>OBSERVATIONS<br>(Defects - depth, type, orientation,<br>spacing, planarity, roughness,<br>thickness, coating) |
|   |       | 0.05     | PID=0<br>ppm  | J&E                  |             |            | ASPHALT FILL: Gravelly clay, low plasticity, yellow/brown, subangular basalt gravels to 4cm (ballast), ash, fine grained sand.                                                                                         | M        | - |                                   |          |                            | TP08_0.05_AS No visible ACM from 10L sieve                                                                                                |
|   |       | 0.28 —   | PID=0.        | 1 <sub>J&amp;E</sub> |             |            | CLAY: medium plasticity, grey, red/orange mottles, minor ironstone gravels.                                                                                                                                            | M/D      |   |                                   |          |                            | <del>-</del> -TP08_0.5_AS                                                                                                                 |
|   |       | 0.70     | ppm           | Jac                  |             |            | SHALE: extremely weathered, grey, orange inclusions.                                                                                                                                                                   | M/D      |   |                                   |          |                            |                                                                                                                                           |
| 1 |       |          |               |                      |             |            | END OF TEST PIT AT 0.80 m                                                                                                                                                                                              |          |   |                                   |          |                            |                                                                                                                                           |
|   |       | 1-       |               |                      |             |            |                                                                                                                                                                                                                        |          |   |                                   | İ        |                            |                                                                                                                                           |
|   |       |          |               |                      |             |            |                                                                                                                                                                                                                        |          |   |                                   |          |                            |                                                                                                                                           |
|   |       | _        |               |                      |             |            |                                                                                                                                                                                                                        |          |   |                                   |          |                            |                                                                                                                                           |
|   |       | -        |               |                      |             |            |                                                                                                                                                                                                                        |          |   |                                   | <br>     |                            |                                                                                                                                           |
|   |       |          |               |                      |             |            |                                                                                                                                                                                                                        |          | i |                                   |          |                            |                                                                                                                                           |
|   |       | -        |               |                      |             |            |                                                                                                                                                                                                                        |          |   |                                   |          |                            |                                                                                                                                           |
|   |       | -        |               |                      |             |            |                                                                                                                                                                                                                        |          |   |                                   |          |                            |                                                                                                                                           |
|   |       |          |               |                      |             |            |                                                                                                                                                                                                                        |          |   |                                   |          |                            |                                                                                                                                           |
|   |       | 2-       |               |                      |             |            |                                                                                                                                                                                                                        |          |   |                                   |          |                            |                                                                                                                                           |
|   |       | _        |               |                      |             |            |                                                                                                                                                                                                                        |          |   |                                   |          |                            |                                                                                                                                           |
|   |       |          |               |                      |             |            |                                                                                                                                                                                                                        |          |   |                                   |          |                            |                                                                                                                                           |
|   |       | -        |               |                      |             |            |                                                                                                                                                                                                                        |          |   |                                   |          |                            |                                                                                                                                           |
|   |       | =        |               |                      |             |            |                                                                                                                                                                                                                        |          |   |                                   |          |                            |                                                                                                                                           |
|   |       |          |               |                      |             |            |                                                                                                                                                                                                                        |          | i |                                   |          |                            |                                                                                                                                           |
|   |       | -        |               |                      |             |            |                                                                                                                                                                                                                        |          |   |                                   |          |                            |                                                                                                                                           |
|   |       | 3-       |               |                      |             |            |                                                                                                                                                                                                                        |          |   |                                   |          |                            |                                                                                                                                           |
|   |       | J-       |               |                      | 1           |            |                                                                                                                                                                                                                        |          |   |                                   |          |                            |                                                                                                                                           |





### **TP09**

SHEET 1 OF 1

Client: Sydney Water

Project:

Sydney Water Ashfield Reservoir, 165-169 Holden St, Ashbury NSW

Test Pit Location: Sydney W Project Number: 2201679B

V Recorded By: Log Checked By:

Date Commenced:

Date Completed:

13/5/15 DR MW

13/5/15

Excavation Method: Excavator Surface RL:

Co-ords: **E 326550 N 6247454 MGA 56** 

| Г       | Tes   | st Pit | Info     | rmatio         | n      |             |            | Field Material I                                                                                                                                                                                                                                            | De    | sc              | ripti           | on                 |      |                    |                                                                                                                               |
|---------|-------|--------|----------|----------------|--------|-------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------|-----------------|--------------------|------|--------------------|-------------------------------------------------------------------------------------------------------------------------------|
| 1       |       | 2      |          | 3              | 4      | 5           | 6          | 7                                                                                                                                                                                                                                                           |       | 8               | 9               |                    |      | 10                 | 11                                                                                                                            |
| WATER   | RL(m) | ()     | DEPTH(m) | FIELD<br>TEST  | SAMPLE | GRAPHIC LOG | USC SYMBOL | SOIL/ROCK MATERIAL FIELD DESCRIPTION (SOIL NAME; plasticity/grain size, colour, particle shape, secondary components, minor constituents, moisture, relative density/consistency) (ROCK NAME; grain size, colour, weathering, strength, minor constituents) |       | MOISTURE        | RELATION DENSIS | 205                | HAND | PENETROMETER (KPa) | STRUCTURE AND ADDITIONAL OBSERVATIONS (Defects - depth, type, orientation, spacing, planarity, roughness, thickness, coating) |
|         |       | 0.2    | 3        | PID=0<br>ppm   | J&B    |             |            | FILL: Gravelly sandy clay, low plasticity, grey, subangular basalt gravels.                                                                                                                                                                                 |       | 0               |                 |                    |      |                    | No visible ACM from 10L sieve                                                                                                 |
|         |       | 0.2    | 5        |                |        |             |            | ASPHALT FILL: Gravelly sandy clay, roadbase, grey, subangular basalt gravels, plant roots.  FILL: Gravelly clay, medium plasticity, brown,                                                                                                                  | 1     | <u>и</u> ,<br>и |                 |                    |      |                    |                                                                                                                               |
| 21.0.63 |       |        | -        | PID=0.1<br>ppm | J&B    |             |            | subangular basalt gravels, bricks, brown/orange clay inclusions, plastic, terracotta, medium grained sand, concrete, metal, minor slag.                                                                                                                     |       | VI              |                 |                    |      |                    | TP09_0.5_AS No visible ACM from 10L sieve                                                                                     |
| 0.002   |       | 0.91   | 1-       | PID=0.2<br>ppm | J&B    |             |            | FILL: Sand, medium grained, yellow, bricks.                                                                                                                                                                                                                 | P     | M               |                 |                    |      |                    | —TP09_1.0_AS                                                                                                                  |
|         |       | 1.20 — | o —      |                |        |             |            | As above, increasing in bricks, some slag, brown clay.                                                                                                                                                                                                      | P     | M               |                 |                    |      |                    |                                                                                                                               |
|         |       |        | 2-       |                |        |             |            |                                                                                                                                                                                                                                                             |       |                 |                 |                    |      |                    |                                                                                                                               |
|         |       | 2.11   | -        | PID=0.1<br>ppm | J&B    |             |            | SHALE: extremely weathered, grey, orange mottles.                                                                                                                                                                                                           | [     | O               |                 |                    |      |                    | ──TP09_2.1_AS                                                                                                                 |
|         |       |        | -        |                |        |             |            | END OF TEST PIT AT 2.50 m                                                                                                                                                                                                                                   |       |                 |                 |                    |      |                    |                                                                                                                               |
|         |       |        | 3-       |                |        | This te     | st pit     | log should be read in conjunction with Parsons Brinckerho                                                                                                                                                                                                   | off's | s a             | ccomr           | i i<br>i i<br>uanv | rina | stand              | ard notes.                                                                                                                    |





SHEET 1 OF 1

13/5/15 13/5/15

DR

MW

Client: **Sydney Water** 

Project:

Excavation Method:

Test Pit Location: 2201679B Project Number:

Sydney Water Ashfield Reservoir, 165-169 Holden St, Ashbury NSW

**Excavator** 

Surface RL:

Co-ords: E 326565 N 6247466 MGA 56

Date Commenced:

Date Completed:

Log Checked By:

Recorded By:

| Г                                                                                                                                               | Tes    | st Pit | Info         | ormatic        | n      |             |            | Field Material C                                                                                                                                                                                                                                            | eso    | cription                      |                             |                                                                                                                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|--------------|----------------|--------|-------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------------------------------|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                 | _      | 2      |              | 3              | 4      | 5           | 6          | 7                                                                                                                                                                                                                                                           | 8      | 9                             | 10                          | 11                                                                                                                            |
| WATEB                                                                                                                                           | RI (m) | (m)    | DEPTH(m)     | FIELD<br>TEST  | SAMPLE | GRAPHIC LOG | USC SYMBOL | SOIL/ROCK MATERIAL FIELD DESCRIPTION (SOIL NAME; plasticity/grain size, colour, particle shape, secondary components, minor constituents, moisture, relative density/consistency) (ROCK NAME; grain size, colour, weathering, strength, minor constituents) | MOIS   | RELATIVE DENSITY /CONSISTENCY | HAND<br>PENETROMETER ((KPa) | STRUCTURE AND ADDITIONAL OBSERVATIONS (Defects - depth, type, orientation, spacing, planarity, roughness, thickness, coating) |
|                                                                                                                                                 |        | 0.0    | _            | PID=0.1<br>ppm | J&B    |             |            | ASPHALT FILL: Gravelly clay, medium plasticity, grey/brown, subangular basalt gravels, medium grained sands, brown/orange clay inclusions, concrete, minor charcoal, slag, shale pieces.                                                                    | M      |                               |                             | TP10_0.05_AS  No visible ACM from 10L sieve                                                                                   |
| .006.GDT 29/5/15                                                                                                                                |        | 0.2    | _            | PID=0.1<br>ppm | J&B    |             |            | CLAY: medium plasticity, grey, red/orange mottles, minor ironstone gravels, becoming hard with depth.                                                                                                                                                       | M/D    |                               |                             | TP10_0.5_AS                                                                                                                   |
| LD (2).GPJ YH2                                                                                                                                  |        | 1.0    | ∘ <b>1</b> - | PID=0.1<br>ppm | J&B    |             |            | SHALE: extremely weathered, grey.                                                                                                                                                                                                                           | M/D    |                               |                             | TP10_1.0_AS                                                                                                                   |
| Parsons Brinckerhoff Australia Pty Ltd. Version 5.1 ENVIRONMENTAL TEST PIT FIELD LOG TP OR HA OR SHALLOW BH_ASHFIELD (2).GPJ YH2006.GDT 29/5/15 |        |        | 2            |                |        |             |            |                                                                                                                                                                                                                                                             |        |                               |                             |                                                                                                                               |
| © Parso                                                                                                                                         |        |        |              |                |        | his te      | st pit     | og should be read in conjunction with Parsons Brinckerho                                                                                                                                                                                                    | ff's a | ccompanyi                     | ng stand                    | ard notes.                                                                                                                    |





### **TP11**

SHEET 1 OF 1

Client:Sydney WaterDate Commenced:14/5/15Project:Date Completed:14/5/15

Test Pit Location: Sydney Water Ashfield Reservoir, 165-169 Holden St, Ashbury NSW Recorded By: DR Project Number: 2201679B Log Checked By: MW

Excavation Method: Excavator Surface RL:

Co-ords: **E 326563 N 6247500 MGA 56** 

| Ŧ       | _oet  | Dit Info | ormatio      | 'n             |             |              | Field Material                                                                                                                                                                                                                                              | Des      | crintion                                |                                                                                                                               |
|---------|-------|----------|--------------|----------------|-------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| 1       | est   | Pit Into | ormatic<br>3 | <b>on</b><br>4 | 5           | 6            | Field Material                                                                                                                                                                                                                                              | Des      | 9 10                                    | ) 11                                                                                                                          |
| WATER - | RL(m) | DEPTH(m) | FIELD C      | SAMPLE         | GRAPHIC LOG | USC SYMBOL o | SOIL/ROCK MATERIAL FIELD DESCRIPTION (SOIL NAME; plasticity/grain size, colour, particle shape, secondary components, minor constituents, moisture, relative density/consistency) (ROCK NAME; grain size, colour, weathering, strength, minor constituents) | MOISTURE | S C C C C C C C C C C C C C C C C C C C | STRUCTURE AND ADDITIONAL OBSERVATIONS (Defects - depth, type, orientation, spacing, planarity, roughness, thickness, coating) |
|         |       | -        | PID=0<br>ppm | J&B            |             |              | FILL: Gravelly clay, medium plasticity, brown, subangular basalt gravels, brick, fine-medium grained sands, brown/orange clay inclusions, concrete, minor ash, minor slag, fibro cement fragments.                                                          | M/D      |                                         | 2 pieces of fibro cement from 10L sieve                                                                                       |
|         |       | 0.35     | PID=0<br>ppm | J&B            |             |              | CLAY: medium plasticity, red/brown, grey mottles, minor ironstone gravels, becoming hard with depth.                                                                                                                                                        | M/D      |                                         | TP11_0.5_AS                                                                                                                   |
|         |       | 0.70     |              |                |             | <u> </u><br> | As above but grey with ironstone gravels and red/orange inclusions.                                                                                                                                                                                         | M/D      |                                         |                                                                                                                               |
|         |       | 0.95     |              |                |             | -            | SHALE: extremely weathered, grey, minor ironstone inclusions and red/orange mottles.  END OF TEST PIT AT 1.00 m                                                                                                                                             | M/D      | -                                       |                                                                                                                               |
|         |       | -        |              |                |             |              |                                                                                                                                                                                                                                                             |          |                                         |                                                                                                                               |
|         |       | 2-       |              |                |             |              |                                                                                                                                                                                                                                                             |          |                                         |                                                                                                                               |
|         |       | 3-       |              |                |             |              |                                                                                                                                                                                                                                                             |          |                                         |                                                                                                                               |

This test pit log should be read in conjunction with Parsons Brinckerhoff's accompanying standard notes.





Excavation Method:

## TEST PIT ENVIRONMENTAL LOG

**TP12** 

SHEET 1 OF 1

Client: Sydney Water

**Excavator** 

Project:
Test Pit Location: Sydney Water Ashfield Reservoir, 165-169 Holden St, Ashbury NSW

Date Completed: Recorded By: Log Checked By:

Date Commenced:

13/5/15 13/5/15

DR

MW

Project Number: 2201679B

Surface RL:

Co-ords: **E 326536 N 6247493 MGA 56** 

|   | est   |          | ormatic        |          |             |                                                                                        | Field Material                                                                                                                                                                                                                                                       |            | crip  |                                                                                                        |                  |                                                                                                                               |
|---|-------|----------|----------------|----------|-------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------|--------------------------------------------------------------------------------------------------------|------------------|-------------------------------------------------------------------------------------------------------------------------------|
| 1 |       | 2        | 3              | 4        | 5           | 6                                                                                      | 7                                                                                                                                                                                                                                                                    | 8          |       | 9                                                                                                      | 10<br>°C         | 11                                                                                                                            |
|   | RL(m) | DEPTH(m) | FIELD          | SAMPLE   | GRAPHIC LOG | USC SYMBOL                                                                             | SOIL/ROCK MATERIAL FIELD DESCRIPTION (SOIL NAME; plasticity/grain size, colour, particle shape, secondary components, minor constituents, moisture, relative density/consistency) (ROCK NAME; grain size, colour, weathering, strength, minor constituents)  ASPHALT | D MOISTURE | EZ.   | LATIVE<br>ENSITY<br>SISTENCE<br>AND LSA<br>LSA<br>LSA<br>LSA<br>LSA<br>LSA<br>LSA<br>LSA<br>LSA<br>LSA | VD<br>D<br>ETROM | STRUCTURE AND ADDITIONAL OBSERVATIONS (Defects - depth, type, orientation, spacing, planarity, roughness, thickness, coating) |
|   |       | 0.05     | PID=0.1<br>ppm | <i>,</i> |             | × × × × × × × × × × × × × × × × × × ×                                                  | FILL: Clayey gravel, grey, subangular basalt gravels, orange clay inclusions, minor charcoal.                                                                                                                                                                        | M/D        | -<br> |                                                                                                        |                  | TP12_0.05_AS No visible ACM from 10L sieve                                                                                    |
|   |       | 0.67     | PID=0<br>ppm   | _        |             | ×<br>×<br>×<br>×<br>×<br>×<br>×<br>×<br>×<br>×<br>×<br>×<br>×<br>×<br>×<br>×<br>×<br>× | CLAY: medium plasticity, red/brown, plant roots,                                                                                                                                                                                                                     | M/D        |       |                                                                                                        |                  | TP12_0.5_AS                                                                                                                   |
|   |       | 1-       | PID=0          | _        |             |                                                                                        | becoming hard with depth.                                                                                                                                                                                                                                            | Σ          |       |                                                                                                        |                  | TP12_1.0_AS                                                                                                                   |
|   |       | 1.10     | ppm            | _        |             |                                                                                        | As above but grey with ironstone gravels and red/orange inclusions.                                                                                                                                                                                                  | M/D        | -     |                                                                                                        |                  |                                                                                                                               |
|   |       | 1.40 —   |                |          | ===         | -                                                                                      | SHALE: extremely weathered, grey, minor ironstone inclusions and red/orange mottles.                                                                                                                                                                                 | M/D        |       |                                                                                                        |                  |                                                                                                                               |
|   |       | 2-       |                |          |             |                                                                                        | END OF TEST PIT AT 1.50 m                                                                                                                                                                                                                                            |            |       |                                                                                                        | .                |                                                                                                                               |
|   |       | 3-       |                |          |             |                                                                                        | log should be read in conjunction with Parsons Brinckerh                                                                                                                                                                                                             |            |       |                                                                                                        |                  |                                                                                                                               |





**TP13** 

SHEET 1 OF 1

14/5/15

Client: Sydney Water Date Commenced: Project: Date Completed:

Project:
Test Pit Location:
Project Number:

Sydney Water Ashfield Reservoir, 165-169 Holden St, Ashbury NSW
Project Number:

Date Completed:
Recorded By:
DR
Log Checked By:
MW

Excavation Method: Excavator Surface RL:

Co-ords: **E 326571 N 6247483 MGA 56** 

| Co-ords  Toot Dit Information Field Material Descript |       |          |              |                   |   |     |                                                                                                                                                                                                                                                             |   |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                            |                                                                                                                               |  |  |
|-------------------------------------------------------|-------|----------|--------------|-------------------|---|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------------------------|-------------------------------------------------------------------------------------------------------------------------------|--|--|
| Test Pit Information 1 2 3 4                          |       |          |              |                   |   | 1 - | Field Material I                                                                                                                                                                                                                                            |   |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _      |                            |                                                                                                                               |  |  |
| 1                                                     | 1     | 2        | 3            | 4                 | 5 | 6   | 7                                                                                                                                                                                                                                                           | + | 8    | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | +      | 10<br>℃                    | 11                                                                                                                            |  |  |
| WATER                                                 | RL(m) | DEPTH(m) | FIELD        | U SOIL N<br>Secon |   |     | SOIL/ROCK MATERIAL FIELD DESCRIPTION (SOIL NAME: plasticity/grain size, colour, particle shape, secondary components, minor constituents, moisture, relative density/consistency) (ROCK NAME; grain size, colour, weathering, strength, minor constituents) | _ | MOIS | RELATIVE DENSITY /CONSISTENCY  A L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S S L S L S S L S S L S S L S S L S S L S L S L S L S L S L S L S L S L S L S L S L S L S L S L S L S L S L S L S L S L S L S L S L S L | Y QA H | HAND<br>PENETROMETER (KPa) | STRUCTURE AND ADDITIONAL OBSERVATIONS (Defects - depth, type, orientation, spacing, planarity, roughness, thickness, coating) |  |  |
|                                                       |       |          | DID-0        | -                 |   |     | ASPHALT                                                                                                                                                                                                                                                     |   | D    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | -                          | TP13_0.1_AS                                                                                                                   |  |  |
|                                                       |       | 0.10     | PID=0<br>ppm | <i>)</i>          |   |     | FILL: Gravelly clay, medium plasticity, grey/brown, subangular basalt gravels, medium grained sands, brown clay, minor ash, minor charcoal, plant roots.                                                                                                    |   | М    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                            | No visible ACM from 10L sieve<br>Stockpile above                                                                              |  |  |
|                                                       |       | 0.30     |              |                   |   |     | CLAY: medium plasticity, red/grey, orange mottles, minor ironstone gravels, becoming grey and hard with depth.                                                                                                                                              |   | M/D  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                            |                                                                                                                               |  |  |
|                                                       |       | _        | PID=0<br>ppm |                   |   |     |                                                                                                                                                                                                                                                             |   |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                            | TP13_0.5_AS                                                                                                                   |  |  |
|                                                       |       | 0.75     |              |                   |   |     | SHALE: extremely weathered, grey, minor ironstone                                                                                                                                                                                                           | + |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 333    |                            |                                                                                                                               |  |  |
|                                                       |       | 1        |              |                   |   |     | inclusions and red/orange mottles.  END OF TEST PIT AT 0.80 m                                                                                                                                                                                               |   | M/νD |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                            |                                                                                                                               |  |  |
|                                                       |       | 3-       |              |                   |   |     |                                                                                                                                                                                                                                                             |   |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                            |                                                                                                                               |  |  |

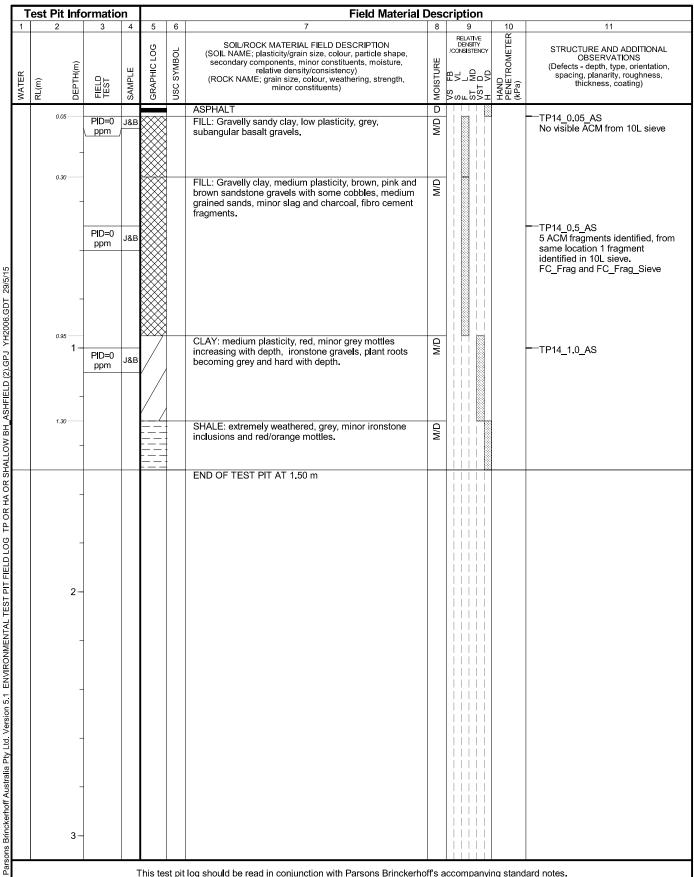
This test pit log should be read in conjunction with Parsons Brinckerhoff's accompanying standard notes.





### **TP14**

SHEET 1 OF 1


14/5/15

Client: Sydney Water Date Commenced: Project: Date Completed:

Project: Date Completed: 14/5/15
Test Pit Location: Sydney Water Ashfield Reservoir, 165-169 Holden St, Ashbury NSW Recorded By: DR
Project Number: 2201679B Log Checked By: MW

Excavation Method: Excavator Surface RL:

Co-ords: **E 326548 N 6247466 MGA 56** 







SHEET 1 OF 1

13/5/15

13/5/15

Client: **Sydney Water** Project:

Date Commenced: Date Completed:

Sydney Water Ashfield Reservoir, 165-169 Holden St, Ashbury NSW Test Pit Location: Recorded By: DR Project Number: 2201679B Log Checked By: MW

Excavation Method: **Excavator** Surface RL:

> Co-ords: E 326538 N 6247455 MGA 56

| _                                      | esi   |            | ormatic        | _      |             |            | Field Material                                                                                                                                                                                                                                              |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                              |  |  |  |
|----------------------------------------|-------|------------|----------------|--------|-------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 1                                      |       | 2          | 3              | 4      | 5           | 6          | 7                                                                                                                                                                                                                                                           | 8        | 9 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11                                                                                                                           |  |  |  |
| \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | RL(m) | DEPTH(m)   | FIELD          | SAMPLE | GRAPHIC LOG | USC SYMBOL | SOIL/ROCK MATERIAL FIELD DESCRIPTION (SOIL NAME; plasticity/grain size, colour, particle shape, secondary components, minor constituents, moisture, relative density/consistency) (ROCK NAME; grain size, colour, weathering, strength, minor constituents) | MOISTURE | RETAILNE DEVELOR FOR VOTE BENEAL STATE OF VOTE BENE | STRUCTURE AND ADDITIONAL OBSERVATIONS (Defects - depth, type, orientation spacing, planarity, roughness, thickness, coating) |  |  |  |
|                                        |       | 0.20       | PID=0.1<br>ppm | J&B    |             |            | FILL: Gravelly sandy clay, low plasticity, grey, subangular basalt gravels.                                                                                                                                                                                 | D        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No visible ACM from 10L sieve                                                                                                |  |  |  |
|                                        |       | 0.20 ——    |                |        |             |            | FILL: Gravelly sandy clay, medium plasticity, brown, subangular gravels, bricks, medium grained sand, slag.                                                                                                                                                 | M/D      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                              |  |  |  |
|                                        |       |            | PID=0<br>ppm   | J&B    | $\bowtie$   |            |                                                                                                                                                                                                                                                             |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TP15_0.5_AS                                                                                                                  |  |  |  |
|                                        |       | 0.60 —     | ррш            |        |             |            | FILL: Sand, medium grained, yellow, bricks, plastic, terracotta, concrete, metal.                                                                                                                                                                           | M/D      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                              |  |  |  |
|                                        |       | 1-         | PID=0<br>ppm   | J&B    |             |            |                                                                                                                                                                                                                                                             |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TP15_1.0_AS                                                                                                                  |  |  |  |
|                                        |       | -          |                |        |             |            | FILL: Sand, medium grained, yellow/brown, bricks.                                                                                                                                                                                                           | M        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                              |  |  |  |
|                                        |       | 2.00 - 2 - | PID=0<br>ppm   | J&B    |             |            | FILL: Clay, medium plasticity, dark brown with orange, red and grey clays, gravels, bricks.                                                                                                                                                                 | М        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TP15_2.0_AS                                                                                                                  |  |  |  |
|                                        |       | -          |                |        |             |            | SHALE: extremely weathered, grey, orange mottles.                                                                                                                                                                                                           | Q/W      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                              |  |  |  |
|                                        |       |            |                |        | ==          |            |                                                                                                                                                                                                                                                             |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TP15_2.9_AS                                                                                                                  |  |  |  |
|                                        |       | •          | PID=0<br>ppm   | J&B    |             | 1          |                                                                                                                                                                                                                                                             |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                              |  |  |  |
|                                        |       | 3-         | · · ·          |        | 1           |            | END OF TEST PIT AT 3.00 m                                                                                                                                                                                                                                   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                            |  |  |  |

## Appendix I

Laboratory reports



Chain of Custody Order No: 76563 samples are received at the laboratory Please fax back a signed copy when Comments/Additional Information SGS Alexandria Environmental and/or Analysis Required Medium\*: S = Soil, W = Water, V = Vapour Rome Received: 15-May-2015 Legend\*\*: (circle the following to be tested) SE139332 COC 2 565 Yes ets. Spreadsheet of Results Required: MOCEN Ę Level 27, Ernst & Young Centre 680 George Straet, GPO Box 5394. Sydney NSW 2001 Tel: (02) 9272 5100 Fax: (02) 9272 5101 Turnaround Time Required: Samples on Ice: Results Expected by/on: PAST. Metals: Project Manager: Phone Number: Fax Results to: Fax Number: Comments Invoice to: Initials Format: Level 15, 28 Freshwater Place,
PO Box 19016 Southbank VIC 3006
Tel: (03) 9881 1111 Fax: (03) 9881 1144 Level 3, 51-55 Bolton Street, PO Box 1162 Newcastle NSW, 2300 Tel: (02) 4929 8300 Fax: (02) 4929 8382 Checked Job Location: Received in Good Order Brisbane
Level 4, Northank Plaza 69 Am Street,
GPO Box 2907 Brisbane QLD 4001
Tel: (D7) 3854 6200 Fax: (07) 3854 6500 & Condition by (Name) Other 188 John Street, PO Box 115 Singleton NSW 2330 Tel: (02) 6572 3377 Fax: (02) 6572 4 Relinquished by: Metals\*\* Date & Time: Date & Time OC\Ob\bCBi2 Company: Signature: Company Signature: s'HA9 PB **BTEX** PB Job Number: HGT Adelaide
 Level fs. 1 King William Street,
 GPO Box 398 Adelaide SA 5001
 Tei: ((9) 8405 4300 Fax: ((9) 8405 4301 Tei
 Perth
 Level 5, 503 Murray Street,
 Level 5, 503 Murray Street,
 Level 5, 503 Murray Street,
 Level 5, 504 Murray Street,
 Level 5, 504 Murray Street,
 Level 5, 504 Murray Street,
 Level 5, 505 Murray Street,
 Level 5, 504 Murray Street,
 Level 5, 507 Murray Street,
 Level 5, 50 Filtered (X) 220,6798 Terms of Business Preservative Type \*muib9M S Sample Location Received in Good Order & Condition by (Name) Yellow Page - Project File Copy White Page - Laboratory Copy Pink Page - Remains in Book Relinquished by Soult Tev Container Date & Time: Date & Time REDUCEDE SYD. LIFTER- ESPS Company: Signature: Signature: Company ABN 80 078 004 798 0 TP62.6.5.45 TPO4-0.05-PK TPO4-0-5-AS TP64-1.0-AS TP05-0- AS TP02-05-AS T 802 40-195 1801-0.05- AS 1801-0-5- AS 54141023-1 TP65-0-AS Robert 1808-0-AS TP01-1-1- AS Sample I.D. BRINCKERHOFF 8 रहे में ठम् Alexandra, aire 2.30 Laboratory Name: SGS Time Received in Good Order 1 & Condition by (Name) Delivery Method: Phone Number: Contact Name: Quote Number: Fax Number Date & Time: Date & Time: Sampled Job Title: Address: Date 3/5 Company: Signature: Company: Signature: 60

Chain of Custody Order No: 76564 samples are received at the laboratory Please fax back a signed copy when Comments/Additional Information Berel and/or Analysis Required Medium\*: S = Soil, W = Water, V = Vapour Legend\*\*: (circle the following to be tested) 10.5 8 day robinson 88 Mn Yes Spreadsheet of Results Required: Imoce Sydney
Level 27, Ernst & Young Centre
680 George Street,
GPO Bax 5994, Street,
GPO Bax 5994, Street,
Tel: (02) 9272 5101 Turnaround Time Required: Samples on Ice: Results Expected by/on: Metals: Al = Project Manager: Phone Number: Fax Results to: Fax Number: Comments: Invoice to: Initials ☐ Melbourne
Level 15, 28 Freshwater Place,
PO Box 19016 Southbank VIC 3006
Ter (03) 9861 1111 Fax: (03) 9861 1144
☐ Newcastle Format: Level 3, 51-55 Bolton Street, PO Box 1162 Newcastle NSW, 2300 Tel: (02) 4929 8300 Fax: (02) 4929 8382 Checked うちょう Received in Good Order & Condition by (Name): ☐ Brisbane
Level 4, Northbank Plaza 69 Ann Street,
GPO Box 2907 Brisbane QLD 4001
Tel: (07) 3854 6200 Fax: (07) 3854 6500 Other | Adelaide | Brisbane | Brisbane | Level 16, 1 King William Street, GPO 80x 2907 Brisbane QLD 4001 GPO 80x 1007 Brisbane QLD 4001 GPO 80x 1018 QPO 80x 7181 Closteres Square WA 6850 PO 80x 115 Singleton NSW 2330 FPO 80x 7181 Closteres Square WA 6850 PO 80x 115 Singleton NSW 2330 Tel. (08) 9489 9700 Fex. (08) 9489 9777 Tel. (02) 6572 4377 Fex. (02) 6572 4 Relinquished by: Metals\*\* Date & Time: Date & Time: OC/Ob/PCB's Company: Signature: Signature Company PB 2201 6796 **BTEX** PB Job Number: HGT Filtered (X) Terms of Business Preservative Type \*muib9M Sample Location Received in Good Order & Condition by (Name): Yellow Page - Project File Copy White Page - Laboratory Copy Pink Page - Remains in Book Relinquished by: Container Date & Time; Date & Time: Company: Signature: Company: Signature: ABN 80 078 004 798 TP06-0-45-AS Tto 7-0.05-AS 1705-1-0-AS TP06\_0.05- AS T868-0-05-PS TP08-0-8-PS TPO9-0-5-AS TP07-0-5- MS TP 09-1-0-AS 7P05-0-5-AS TPO6-1-0-AS TOB-0-45 Sample I.D. SID WITHER ESP'S BRINCKERHOFF Time Laboratory Name: Received in Good Order & Condition by (Name): Delivery Method: Phone Number: Contact Name: Quote Number: Fax Number: Relinquished by: Job Title: Sampled Date & Time; Date & Time: Address: Date Company: Signature: Company Signature: 2 90 9

W 37 Chain of Custody Order No: 76565 Jour samples are received at the laboratory Please fax back a signed copy when Comments/Additional Information (S) and/or Analysis Required Sn Medium\*: S = Soil, W = Water, V = Vapour ゆいしてつ Legend\*\*: (circle the following to be tested) Se 2 0430 206 Sd Co 1811-0-18S Yes Spreadsheet of Results Required: Sydney
Lavel 27, Ernst & Young Centre
680 George Street,
GPO Box 5384, Sydney NSW 2001
Tel: (02) 9272 5100 ESOB Be Z Davie Metals: AI moch Turnaround Time Required: Samples on Ice: Results Expected by/on: Project Manager: Phone Number: Fax Results to: Fax Number: Comments Invoice to: Initials Format: Level 15, 28 Freshwater Place,
PO Box 19016 Southbank VIC 3006
Tel: (03) 9851 1111 Fax: (03) 9861 1144 Level 3, 51-55 Botton Street, PO Box 1162 Newcastle NSW, 2300 Tel: (02) 4929 8300 Fax: (02) 4929 8382 Checked DALTE 10 Job Location Received in Good Order & Condition by (Name): Other Relinquished by: Metals\*\* Date & Time: Date & Time OC/Ob/bCB<sub>i</sub>2 Company: Signature: Company Signature: PB Job Number: PB **BTEX** HdI Filtered (X) Terms of Business Preservative Type 6 \*muibeM S Sor. Rehippool Sample Received in Good Order Yellow Page - Project File Copy & Condition by (Name) White Page - Laboratory Copy Pink Page - Remains in Book Relinquished by TP99\_2-1-16 Jouth 0 Container Date & Time: Date & Time: 0 Company: Signature: Company Signature: ABN 80 078 004 798 JOD TITLE: SYD\_WATER ESPS 1810-0-05-AS T Plo-1.0-85 TP12-0-05-FS TPW11-0-125 TP10 -0.5-AS TP11-05-18 TAZ-0-54-AS TP12-1.0-A TP-0-5-1-45 1813-SP-AS Sebiron 1P13-0-05-48 Sample I.D. BRINCKERHOFF 230 Time Received in Good Order Laboratory Name: & Condition by (Name): Delivery Method: Phone Number Contact Name: Quote Number Fax Number: Relinquished by: Sampled Date & Time: Address: Date & Time: 18/5 Date Signature: Company: Company: Signature: a 0 4

400 from Sieuce Muce any arelyce a weep Chain of Custody Order No: 76566 samples are received at the laboratory F TO-PRAG Sieve Cu Fe Please fax back a signed copy when Comments/Additional Information and/or Analysis Required Medium\*: S = Soil, W = Water, V = Vapour , S. & Legend\*\*: (circle the following to be tested) 2 N/E The Fragine 1 Nes / Project Manager: Moge Spreadsheet of Results Required: Mn Level 27, Ernst & Young Centre 680 George Street. 680 Dex 5394, Sydney NSW 2001 Tel: (02) 9272 5100 Fax: (02) 9272 5101 Mg 930 Metals: Al Turnaround Time Required: Samples on Ice: Results Expected by/on: Phone Number: Fax Results to: Fax Number: Comments Invoice to: Initials Format: Level 15, 28 Freshwater Place,
PO Box 19016 Southbank VIC 3006
Tel: (03) 9851 1111 Fax: (03) 9861 1144

☐ Newcastle Level 3, 51-55 Bolton Street, PO Box 1162 Newcastle NSW, 2300 Tel: (02) 4929 8300 Fax: (02) 4929 8382 Job Location: Job Location Checked Received in Good Order & Condition by (Name): Other Level 4, Northbank Plaza 69 Ann Street, GPO Box 2907 Brisbane QLD 4001
Tel: (07) 3854 6200 Fax: (07) 3854 6500 Level 5, 503 Murray Street, PO Box 7181 Clotisters Square WA 6850 PO Box 715 Sngleton NSW 2330 Tel: (09) 9499 9770 Tel: (02) 6572 3377 Fex: (02) 6572 Relinquished by: Metals\*\* Date & Time: Date & Time OC/Ob/bCBis Company: Signature: Company Signature **BTEX** 220 679B PB Job Number: HqT Filtered (X) Terms of Business Level 16, 1 King William Street, GPO Box 398 Adelaide SA 5001
Tel: (08) 8405 4300 Fax: (08) 8405 4301 Preservative Type \*muib9M Sample Received in Good Order & Condition by (Name): Yellow Page - Project File Copy White Page - Laboratory Copy Pink Page - Remains in Book JOD TITLES SO WATER ESA'S - ASCHIELD Relinquished by Jar + Bee Date & Time: Container Date & Time: Company Signature: Company: Signature ABN 80 078 004 798 TP14-0.5-181 1P14\_0-05\_MS TP14-1-0-AS TAS-2-9-AS TP15-2.0-AS TP15-6.5-45 TP15-1.0- AS 7 PIS-0-AS 1 Sample I.D. FBISOSIS FBISOSIS BRINCKERHOFF Ī アステ Laboratory Name: Time Received in Good Order & Condition by (Name) Delivery Method: Phone Number: Contact Name: Quote Number: Fax Number: Relinquished by: Date & Time: Sampled Date & Time: 14/ Address: 151 Date Company: Signature: Company Signature: S

Chain of Custody Order No: 76567 samples are received at the laboratory Please fax back a signed copy when Comments/Additional Information Bre and/or Analysis Required Medium\*: S = Soil, W = Water, V = Vapour Legend\*\*; (circlethe following to be tested) 2 Z > Yes Le et 27, Ernst & Young Centre
GEO George Street,
GPO Box 5394, Sydney NSW 2001
Tel: (02) 9272 5100 Fax (02) 9272 5101 Spreadsheet of Results Reduined: Mn Li Mg Samples on Ice: Turnaround Time Required: Results Expected by/on: Metals: Al Project Manager: Phone Number: Fax Results to: Fax Number: Comments: Invoice to: Initials Format: Level 15, 28 Freshwater Place, PO Box 19016 Southbank VIC 3006 Tel: (03) 9861 1111 Fax: (03) 9861 1144 Level 3, 51-55 Bolton Street, PO Box 1162 Newcastle NSW, 2300 Tel: (02) 4929 8300 Fax: (02) 4929 8382 Checked □ Newcastle Job Location: Brisbane
Level 4, Northbank Plaza 69 Ann Street,
ery OB Oax 2907 Bisbane QLD 4001
Tel: (bf) 3854 6500 Fax: (bf) 3854 6500
Singleton Received in Good Order & Condition by (Name): Level 16. 1 King William Street, GPD 4001 Page 80 Ann Street, GPD 800 Sea 2807 Brisbane QLD 4001 Peric (BP) 8405 43001 Peric (BP) 3864 45000 Peric (BP) 3864 45000 Peric (BP) 3864 45000 Peric (BP) 3864 45000 Peric (BP) 3864 4500 Peric (BP) 3 Other Relinquished by: Metals\*\* Date & Time: Date & Time: OC/Ob/bCBi2 Company: Signature: Signature Company s'HA9 **BTEX** PB Job Number: HGT Filtered (X) Terms of Business Preservative Type \*muib9M Sample Received in Good Order Yellow Page - Project File Copy & Condition by (Name): White Page - Laboratory Copy Pink Page - Remains in Book Relinquished by: Container Date & Time: Date & Time: SYD WATCH ESA'S HS Signature: Company: Company Signature: ABN 80 078 004 798 Sample I.D. BRINCKERHOFF Time Received in Good Order Laboratory Name: & Condition by (Name): Delivery Method: Phone Number: Contact Name: Quote Number: Fax Number: Relinquished by: Job Title: Sampled Date & Time: Date & Time: Address: Date Signature: Company: Company Signature:

## AU.SampleReceipt.Sydney (Sydney)

From:

Powell, Imogen [IPowell@pb.com.au]

Sent: To:

Tuesday, 19 May 2015 9:48 AM AU.SampleReceipt.Sydney (Sydney)

Cc:

Robinson, Daniel

Subject:

RE: SE139332 - 2201679B

Hi Emily

The below in your email is correct.

Please confirm "FC-FRAG sieve" only to be analysed and the other bag of fragments to be placed on hold. – Yes. Please could you re mane this sample "TP14\_FC\_FRAG sieve"?

For TP11\_0\_AS asbestos to be analysed on the "Frag" sample. – Please undertake % w/w on TP11\_0\_As frag and TP11\_0\_AS.

Kind regards

Imogen



Imogen Powell

Senior Environmental Scientist

D: +61 2 92721478

IPowell@pb.com.au

From: AU.SampleReceipt.Sydney (Sydney) [mailto:AU.SampleReceipt.Sydney@sgs.com]

**Sent:** Tuesday, 19 May 2015 9:08 AM **To:** Powell, Imogen; Robinson, Daniel **Subject:** FW: SE139332 - 2201679B

Importance: High

Dear Imogen/Daniel,

Sample jars for TP09 and TP14 samples were all labelled as TP15.

Bags for TP14 were labelled correctly. So cross-matched with the "jarred" samples and able to match the respective samples.

TP15 series has a yellow tint on the labels so able to confirm the TP15 samples.

TP09 has project number written on the bag so able to match the respective samples as TP09.

2 Bags received for TP05 0 AS.

Please confirm "FC-FRAG sieve" only to be analysed and the other bag of fragments to be placed on hold.

For TP11\_0\_AS asbestos to be analysed on the "Frag" sample.

Please clarify as soon as possible so analysis can commence and the above is correct.

Thank You.





CLIENT DETAILS

LABORATORY DETAILS

Imogen Powell Contact

Parsons Brinckerhoff Australia Pty Ltd Client

Level 27, 680 George St Address

NSW 2000

**Huong Crawford** Manager

SGS Alexandria Environmental Laboratory

Unit 16, 33 Maddox St Address

Alexandria NSW 2015

02 9272 5100 +61 2 8594 0400 Telephone Telephone 02 9272 5101 +61 2 8594 0499 Facsimile Facsimile

ipowell@pb.com.au au.environmental.sydney@sgs.com Email Email

2201679B - Syd Water ESA'S-Ashfield Project

Fri 15/5/2015 Samples Received 76563--76567 Fri 22/5/2015 Order Number Report Due SE139332 Samples 38 SGS Reference

Yes

SUBMISSION DETAILS

This is to confirm that 38 samples were received on Friday 15/5/2015. Results are expected to be ready by Friday 22/5/2015. Please quote SGS reference SE139332 when making enquiries. Refer below for details relating to sample integrity upon receipt.

Sample counts by matrix 34 Soil,2 Material,2 Water Type of documentation received COC Date documentation received 15/5/2015 Samples received in good order Yes 3.2°C Samples received without headspace Sample temperature upon receipt Yes Sample container provider Turnaround time requested SGS Standard Samples received in correct containers Yes Sufficient sample for analysis Yes Sample cooling method Samples clearly labelled се Yes

Samples will be held for one month for water samples and two months for soil samples from date of report, unless otherwise instructed.

COMMENTS -

Clay Content - Subcontracted to SGS Cairns, 2/58 Comport St, Portsmith QLD 4870, NATA Accreditation Number: 2562, Site Number: 3146. 14 soil samples have been placed on hold as per client's request. These samples will not be processed.

TP11 0 AS Bag for Soil sample was not received. Only the fragment will be analysed.

Some discrepencies on the sample depth marked on COC.

Complete documentation received

To the extent not inconsistent with the other provisions of this document and unless specifically agreed otherwise in writing by SGS, all SGS services are rendered in accordance with the applicable SGS General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions/General-Conditions-of-Services-English.aspx as at the date of this document.

Attention is drawn to the limitations of liability and to the clauses of indemnification.



CLIENT DETAILS \_

Client Parsons Brinckerhoff Australia Pty Ltd

Project 2201679B - Syd Water ESA'S-Ashfield

- SUMMARY OF ANALYSIS -

| No. | Sample ID    | OC Pesticides in Soil | OP Pesticides in Soil | PAH (Polynuclear Aromatic<br>Hydrocarbons) in Soil | PCBs in Soil | pH in soil (1:5) | TRH (Total Recoverable<br>Hydrocarbons) in Soil | VOC's in Soil | Volatile Petroleum<br>Hydrocarbons in Soil |
|-----|--------------|-----------------------|-----------------------|----------------------------------------------------|--------------|------------------|-------------------------------------------------|---------------|--------------------------------------------|
| 001 | TP01_0.05_AS | 28                    | 13                    | 25                                                 | 11           | 1                | 10                                              | 12            | 8                                          |
| 002 | TP01_0.5_AS  | -                     | -                     | -                                                  | -            | 1                | -                                               | -             | -                                          |
| 004 | TP02_0.5_AS  | 28                    | 13                    | 25                                                 | 11           | 1                | 10                                              | 12            | 8                                          |
| 005 | TP03_0_AS    | 28                    | 13                    | 25                                                 | 11           | 1                | 10                                              | 12            | 8                                          |
| 006 | TP04_0.05_AS | 28                    | 13                    | 25                                                 | 11           | 1                | 10                                              | 12            | 8                                          |
| 007 | TP05_0_AS    | 28                    | 13                    | 25                                                 | 11           | 1                | 10                                              | 12            | 8                                          |
| 008 | TP06_0.45_AS | 28                    | 13                    | 25                                                 | 11           | 1                | 10                                              | 12            | 8                                          |
| 009 | TP07_0.05_AS | 28                    | 13                    | 25                                                 | 11           | 1                | 10                                              | 12            | 8                                          |
| 010 | TP07_0.5_AS  | -                     | -                     | 25                                                 | -            | -                | -                                               | -             | -                                          |
| 011 | TP08_0.05_AS | 28                    | 13                    | 25                                                 | 11           | 1                | 10                                              | 12            | 8                                          |
| 013 | TP09_0.5_AS  | 28                    | 13                    | 25                                                 | 11           | 1                | 10                                              | 12            | 8                                          |
| 014 | TP09_1.0_AS  | -                     | -                     | 25                                                 | -            | -                | 10                                              | 12            | 8                                          |
| 015 | TP09_2.1_AS  | -                     | -                     | 25                                                 | -            | -                | -                                               | -             | -                                          |
| 016 | TP10_0.05_AS | 28                    | 13                    | 25                                                 | 11           | 1                | 10                                              | 12            | 8                                          |
| 017 | TP10_0.5_AS  | -                     | -                     | 25                                                 | -            | -                | -                                               | -             | -                                          |
| 018 | TP11_0_AS    | 28                    | 13                    | 25                                                 | 11           | 1                | 10                                              | 12            | 8                                          |
| 019 | TP12_0.05_AS | -                     | -                     | 25                                                 | -            | -                | 10                                              | 12            | 8                                          |
| 020 | TP12_0.5_AS  | 28                    | 13                    | 25                                                 | 11           | 1                | 10                                              | 12            | 8                                          |
| 021 | TP13_SP_AS   | -                     | -                     | 25                                                 | -            | -                | -                                               | -             | -                                          |
| 022 | TP13_0.05_AS | 28                    | 13                    | 25                                                 | 11           | 1                | 10                                              | 12            | 8                                          |
| 024 | TP14_0.5_AS  | 28                    | 13                    | 25                                                 | 11           | 1                | 10                                              | 12            | 8                                          |

CONTINUED OVERLEAF

The above table represents SGS Environmental Services' interpretation of the client-supplied Chain Of Custody document.

The numbers shown in the table indicate the number of results requested in each package.

Please indicate as soon as possible should your request differ from these details.

Testing as per this table shall commence immediately unless the client intervenes with a correction .

19/05/2015 Page 2 of 7



\_ CLIENT DETAILS \_

Client Parsons Brinckerhoff Australia Pty Ltd

Project 2201679B - Syd Water ESA'S-Ashfield

SUMMARY OF ANALYSIS -

| No. | Sample <b>I</b> D | OC Pesticides in Soil | OP Pesticides in Soil | PAH (Polynuclear Aromatic<br>Hydrocarbons) in Soil | PCBs in Soil | pH in soil (1:5) | TRH (Total Recoverable<br>Hydrocarbons) in Soil | VOC's in Soil | Volatile Petroleum<br>Hydrocarbons in Soil |  |
|-----|-------------------|-----------------------|-----------------------|----------------------------------------------------|--------------|------------------|-------------------------------------------------|---------------|--------------------------------------------|--|
| 025 | TP14_1.0_AS       | -                     | -                     | 25                                                 | -            | -                | -                                               | -             | -                                          |  |
| 027 | TP15_0.5_AS       | 28                    | 13                    | 25                                                 | 11           | 1                | 10                                              | 12            | 8                                          |  |
| 028 | TP15_1.0_AS       | -                     | -                     | 25                                                 | -            | -                | 10                                              | 12            | 8                                          |  |
| 029 | TP15_2.0_AS       | -                     | -                     | 25                                                 | -            | -                | -                                               | -             | -                                          |  |
| 030 | TP15_2.9_AS       | -                     | -                     | 25                                                 | -            | -                | -                                               | -             | -                                          |  |
| 033 | Dup1_AS           | 28                    | 13                    | 25                                                 | 11           | _                | 10                                              | 12            | 8                                          |  |
| 035 | TS_AS             | -                     | -                     | -                                                  | -            | -                | -                                               | 12            | -                                          |  |
| 036 | TB_AS             | -                     | -                     | -                                                  | -            | -                | 10                                              | 12            | 8                                          |  |
| 038 | Dup2_AS           | -                     | -                     | 25                                                 | -            | -                | -                                               | -             | -                                          |  |

CONTINUED OVERLEAF

19/05/2015 Page 3 of 7

The numbers shown in the table indicate the number of results requested in each package.

Please indicate as soon as possible should your request differ from these details.



\_ CLIENT DETAILS \_

Client Parsons Brinckerhoff Australia Pty Ltd

Project 2201679B - Syd Water ESA'S-Ashfield

- SUMMARY OF ANALYSIS -

| No. | Sample ID    | Clay and Fine Silt in<br>Soil/Aggregate | Exchangeable Cations and Cation Exchange Capacity | Gravimetric Determination of Asbestos in Soil | Mercury in Soil | Moisture Content | Total Recoverable Metals<br>in Soil by ICPOES from |
|-----|--------------|-----------------------------------------|---------------------------------------------------|-----------------------------------------------|-----------------|------------------|----------------------------------------------------|
| 001 | TP01_0.05_AS | -                                       | -                                                 | 6                                             | 1               | 1                | 7                                                  |
| 002 | TP01_0.5_AS  | 1                                       | 13                                                | -                                             | -               | 1                | -                                                  |
| 003 | TP02_0_AS    | -                                       | -                                                 | 6                                             | -               | -                | -                                                  |
| 004 | TP02_0.5_AS  | -                                       | -                                                 | -                                             | 1               | 1                | 7                                                  |
| 005 | TP03_0_AS    | -                                       | -                                                 | 6                                             | 1               | 1                | 7                                                  |
| 006 | TP04_0.05_AS | -                                       | -                                                 | 6                                             | 1               | 1                | 7                                                  |
| 007 | TP05_0_AS    | -                                       | -                                                 | 6                                             | 1               | 1                | 7                                                  |
| 008 | TP06_0.45_AS | -                                       | -                                                 | 6                                             | 1               | 1                | 7                                                  |
| 009 | TP07_0.05_AS | -                                       | -                                                 | 6                                             | 1               | 1                | 7                                                  |
| 010 | TP07_0.5_AS  | -                                       | -                                                 | -                                             | 1               | 1                | 7                                                  |
| 011 | TP08_0.05_AS | -                                       | -                                                 | 6                                             | 1               | 1                | 7                                                  |
| 012 | TP09_0_AS    | -                                       | -                                                 | 6                                             | -               | -                | -                                                  |
| 013 | TP09_0.5_AS  | -                                       | -                                                 | 6                                             | 1               | 1                | 7                                                  |
| 014 | TP09_1.0_AS  | -                                       | -                                                 | -                                             | 1               | 1                | 7                                                  |
| 015 | TP09_2.1_AS  | -                                       | -                                                 | -                                             | 1               | 1                | 7                                                  |
| 016 | TP10_0.05_AS | -                                       | -                                                 | 6                                             | 1               | 1                | 7                                                  |
| 017 | TP10_0.5_AS  | -                                       | -                                                 | -                                             | 1               | 1                | 7                                                  |
| 018 | TP11_0_AS    | -                                       | -                                                 | -                                             | 1               | 1                | 7                                                  |
| 019 | TP12_0.05_AS | -                                       | -                                                 | 6                                             | 1               | 1                | 7                                                  |
| 020 | TP12_0.5_AS  | -                                       | -                                                 | -                                             | 1               | 1                | 7                                                  |
| 021 | TP13_SP_AS   | -                                       | -                                                 | -                                             | 1               | 1                | 7                                                  |
| 022 | TP13_0.05_AS | -                                       | -                                                 | 6                                             | 1               | 1                | 7                                                  |
| 023 | TP14_0.05_AS | -                                       | -                                                 | 6                                             | -               | -                | -                                                  |
| 024 | TP14_0.5_AS  | -                                       | -                                                 | 6                                             | 1               | 1                | 7                                                  |

CONTINUED OVERLEAF

The above table represents SGS Environmental Services' interpretation of the client-supplied Chain Of Custody document.

The numbers shown in the table indicate the number of results requested in each package.

Please indicate as soon as possible should your request differ from these details.

Testing as per this table shall commence immediately unless the client intervenes with a correction .

19/05/2015 Page 4 of 7



\_ CLIENT DETAILS \_

Client Parsons Brinckerhoff Australia Pty Ltd

Project 2201679B - Syd Water ESA'S-Ashfield

- SUMMARY OF ANALYSIS -

| No. | Sample ID          | Fibre ID in bulk materials | Gravimetric Determination of Asbestos in Soil | Mercury in Soil | Moisture Content | Total Recoverable Metals in Soil by ICPOES from | Weight of Sample |
|-----|--------------------|----------------------------|-----------------------------------------------|-----------------|------------------|-------------------------------------------------|------------------|
| 025 | TP14_1.0_AS        | -                          | -                                             | 1               | 1                | 7                                               | -                |
| 026 | TP15_0_AS          | -                          | 6                                             | -               | -                | -                                               | -                |
| 027 | TP15_0.5_AS        | -                          | 6                                             | 1               | 1                | 7                                               | -                |
| 028 | TP15_1.0_AS        | -                          | -                                             | 1               | 1                | 7                                               | -                |
| 029 | TP15_2.0_AS        | -                          | -                                             | 1               | 1                | 7                                               | -                |
| 030 | TP15_2.9_AS        | -                          | -                                             | 1               | 1                | 7                                               | -                |
| 033 | Dup1_AS            | -                          | -                                             | 1               | 1                | 7                                               | -                |
| 034 | TP14_FC_FRAG Sieve | 1                          | -                                             | -               | -                | -                                               | 1                |
| 036 | TB_AS              | -                          | -                                             | -               | 1                | -                                               | -                |
| 037 | TP11_0_AS_FRAG     | 1                          | -                                             | -               | -                | -                                               | 1                |
| 038 | Dup2_AS            | -                          | -                                             | 1               | 1                | 7                                               | -                |

CONTINUED OVERLEAF

Please indicate as soon as possible should your request differ from these details.

Testing as per this table shall commence immediately unless the client intervenes with a correction .



SUMMARY OF ANALYSIS -

### **SAMPLE RECEIPT ADVICE**

CLIENT DETAILS \_ Client Parsons Brinckerhoff Australia Pty Ltd Project 2201679B - Syd Water ESA'S-Ashfield

ar Aromatic in Water issolved) MS overable n Water Water Water

| No. | Sample <b>I</b> D | OC Pesticides in | OP Pesticides in | PAH (Polynuclea<br>Hydrocarbons) ir | PCBs in Water | Trace Metals (Di | TRH (Total Reco<br>Hydrocarbons) ir | VOCs in Water | Volatile Petroleur<br>Hydrocarbons in |
|-----|-------------------|------------------|------------------|-------------------------------------|---------------|------------------|-------------------------------------|---------------|---------------------------------------|
| 031 | FB130515          | 28               | 13               | 22                                  | 11            | 7                | 9                                   | 12            | 8                                     |
| 032 | FB140515          | 28               | 13               | 22                                  | 11            | 7                | 9                                   | 12            | 8                                     |

CONTINUED OVERLEAF

Please indicate as soon as possible should your request differ from these details.

19/05/2015 Page 6 of 7

Testing as per this table shall commence immediately unless the client intervenes with a correction .



Client Parsons Brinckerhoff Australia Pty Ltd Project 2201679B - Syd Water ESA'S-Ashfield

No. Sample ID

No. Sample ID

031 FB130515

1

032 FB140515

1

The above table represents SGS Environmental Services' interpretation of the client-supplied Chain Of Custody document.

The numbers shown in the table indicate the number of results requested in each package.

Please indicate as soon as possible should your request differ from these details.

Testing as per this table shall commence immediately unless the client intervenes with a correction .



### **ANALYTICAL REPORT**



CLIENT DETAILS -

LABORATORY DETAILS

Contact Imogen Powell

Client Parsons Brinckerhoff Australia Pty Ltd

Address Level 27, 680 George St

NSW 2000

Manager Huong Crawford

Laboratory SGS Alexandria Environmental

Address Unit 16, 33 Maddox St

Alexandria NSW 2015

Telephone 02 9272 5100 Facsimile 02 9272 5101

Email ipowell@pb.com.au

2201679B - Syd Water ESA'S-Ashfield

Order Number 76563--76567

Samples 38
Date Received 15/5/2015

Telephone +61 2 8594 0400 Facsimile +61 2 8594 0499

Email au.environmental.sydney@sgs.com

 SGS Reference
 SE139332 R0

 Report Number
 0000110823

 Date Reported
 22/5/2015

Date Started 20/5/2015

COMMENTS

Project

Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562(4354).

Clay Content - Subcontracted to SGS Cairns, 2/58 Comport St, Portsmith QLD 4870, NATA Accreditation Number: 2562, Site Number: 3146.

No respirable fibres detected in all samples using trace analysis technique as per AS 4964-2004.

Asbestos analysed by Approved Identifiers Yusuf Kuthpudin and Ravee Sivasubramaniam.

SIGNATORIES

**Andy Sutton** 

Senior Organic Chemist

Kinly

Dong Liang

Metals/Inorganics Team Leader

S. Ravenoln.

Kamrul Ahsan

Senior Chemist

Ly Kim Ha

Organic Section Head

Ravee Sivasubramaniam

Asbestos Analyst

SGS Australia Pty Ltd Environmen
ABN 44 000 964 278

Environmental Services

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australia Australia t +61 2 8594 0400

f+61 2 8594 0499

www.au.sgs.com



### VOC's in Soil [AN433/AN434] Tested: 20/5/2015

|                |       |     | TP01_0.05_AS                   | TP02_0.5_AS                    | TP03_0_AS                      | TP04_0.05_AS                   | TP05_0_AS                      |
|----------------|-------|-----|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|
|                |       |     | SOIL                           | SOIL                           | SOIL                           | SOIL                           | SOIL                           |
| PARAMETER      | UOM   | LOR | -<br>13/5/2015<br>SE139332,001 | -<br>14/5/2015<br>SE139332,004 | -<br>14/5/2015<br>SE139332,005 | -<br>13/5/2015<br>SE139332,006 | -<br>14/5/2015<br>SE139332,007 |
| Benzene        | mg/kg | 0.1 | <0.1                           | <0.1                           | <0.1                           | <0.1                           | <0.1                           |
| Toluene        | mg/kg | 0.1 | <0.1                           | <0.1                           | <0.1                           | <0.1                           | <0.1                           |
| Ethylbenzene   | mg/kg | 0.1 | <0.1                           | <0.1                           | <0.1                           | <0.1                           | <0.1                           |
| m/p-xylene     | mg/kg | 0.2 | <0.2                           | <0.2                           | <0.2                           | <0.2                           | <0.2                           |
| o-xylene       | mg/kg | 0.1 | <0.1                           | <0.1                           | <0.1                           | <0.1                           | <0.1                           |
| Total Xylenes* | mg/kg | 0.3 | <0.3                           | <0.3                           | <0.3                           | <0.3                           | <0.3                           |
| Total BTEX*    | mg/kg | 0,6 | <0.6                           | <0.6                           | <0.6                           | <0.6                           | <0.6                           |
| Naphthalene    | mg/kg | 0.1 | <0.1                           | <0.1                           | <0.1                           | <0.1                           | <0.1                           |

|                |       |     | TP06_0.45_AS   | TP07_0.05_AS   | TP08_0.05_AS   | TP09_0.5_AS    | TP09_1.0_AS    |
|----------------|-------|-----|----------------|----------------|----------------|----------------|----------------|
|                |       |     | SOIL           | SOIL           | SOIL           | SOIL           | SOIL           |
|                |       |     | -<br>14/5/2015 | -<br>14/5/2015 | -<br>14/5/2015 | -<br>13/5/2015 | -<br>13/5/2015 |
| PARAMETER      | UOM   | LOR | SE139332,008   | SE139332,009   | SE139332.011   | SE139332.013   | SE139332,014   |
| Benzene        | mg/kg | 0.1 | <0.1           | <0.1           | <0.1           | <0.1           | <0.1           |
| Toluene        | mg/kg | 0.1 | <0.1           | <0.1           | <0.1           | <0.1           | <0.1           |
| Ethylbenzene   | mg/kg | 0.1 | <0.1           | <0.1           | <0.1           | <0.1           | <0.1           |
| m/p-xylene     | mg/kg | 0.2 | <0.2           | <0.2           | <0.2           | <0.2           | <0.2           |
| o-xylene       | mg/kg | 0.1 | <0.1           | <0.1           | <0.1           | <0.1           | <0.1           |
| Total Xylenes* | mg/kg | 0.3 | <0.3           | <0.3           | <0.3           | <0.3           | <0.3           |
| Total BTEX*    | mg/kg | 0.6 | <0.6           | <0.6           | <0.6           | <0.6           | <0.6           |
| Naphthalene    | mg/kg | 0.1 | <0.1           | <0.1           | <0.1           | <0.1           | <0.1           |

|                |       |     | TP10_0.05_AS   | TP11_0_AS      | TP12_0.05_AS   | TP12_0.5_AS    | TP13_0.05_AS   |
|----------------|-------|-----|----------------|----------------|----------------|----------------|----------------|
|                |       |     | SOIL           | SOIL           | SOIL           | SOIL           | SOIL           |
|                |       |     | -<br>13/5/2015 | -<br>14/5/2015 | -<br>13/5/2015 | -<br>13/5/2015 | -<br>14/5/2015 |
| PARAMETER      | UOM   | LOR | SE139332.016   | SE139332.018   | SE139332.019   | SE139332.020   | SE139332.022   |
| Benzene        | mg/kg | 0.1 | <0.1           | <0.1           | <0.1           | <0.1           | <0.1           |
| Toluene        | mg/kg | 0.1 | <0.1           | <0.1           | <0.1           | <0.1           | <0.1           |
| Ethylbenzene   | mg/kg | 0.1 | <0.1           | <0.1           | <0.1           | <0.1           | <0.1           |
| m/p-xylene     | mg/kg | 0.2 | <0.2           | <0.2           | <0.2           | <0.2           | <0.2           |
| o-xylene       | mg/kg | 0.1 | <0.1           | <0.1           | <0.1           | <0.1           | <0.1           |
| Total Xylenes* | mg/kg | 0.3 | <0.3           | <0.3           | <0.3           | <0.3           | <0.3           |
| Total BTEX*    | mg/kg | 0.6 | <0.6           | <0.6           | <0.6           | <0.6           | <0.6           |
| Naphthalene    | mg/kg | 0.1 | <0.1           | <0.1           | <0.1           | <0.1           | <0.1           |

|                |       |     | TP14_0.5_AS    | TP15_0.5_AS  | TP15_1.0_AS  | Dup1_AS        | TS_AS          |
|----------------|-------|-----|----------------|--------------|--------------|----------------|----------------|
|                |       |     | SOIL           | SOIL         | SOIL         | SOIL           | SOIL           |
|                |       |     | -<br>14/5/2015 |              |              | -<br>13/5/2015 | -<br>13/5/2015 |
| PARAMETER      | UOM   | LOR | SE139332.024   | SE139332.027 | SE139332.028 | SE139332.033   | SE139332.035   |
| Benzene        | mg/kg | 0.1 | <0.1           | <0.1         | <0.1         | <0.1           | [85%]          |
| Toluene        | mg/kg | 0.1 | <0.1           | <0.1         | <0.1         | <0.1           | [100%]         |
| Ethylbenzene   | mg/kg | 0.1 | <0.1           | <0.1         | <0.1         | <0.1           | [92%]          |
| m/p-xylene     | mg/kg | 0.2 | <0.2           | <0.2         | <0.2         | <0.2           | [88%]          |
| o-xylene       | mg/kg | 0.1 | <0.1           | <0.1         | <0.1         | <0.1           | [91%]          |
| Total Xylenes* | mg/kg | 0.3 | <0.3           | <0.3         | <0.3         | <0.3           | -              |
| Total BTEX*    | mg/kg | 0.6 | <0.6           | <0.6         | <0.6         | <0.6           | -              |
| Naphthalene    | mg/kg | 0.1 | <0.1           | <0.1         | <0.1         | <0.1           | -              |

22/05/2015 Page 2 of 37





### VOC's in Soil [AN433/AN434] Tested: 20/5/2015 (continued)

|                |       |     | TB_AS          |
|----------------|-------|-----|----------------|
|                |       |     | SOIL           |
|                |       |     | -<br>13/5/2015 |
| PARAMETER      | UOM   | LOR | SE139332,036   |
| Benzene        | mg/kg | 0.1 | <0.1           |
| Toluene        | mg/kg | 0.1 | <0.1           |
| Ethylbenzene   | mg/kg | 0.1 | <0.1           |
| m/p-xylene     | mg/kg | 0.2 | <0.2           |
| o-xylene       | mg/kg | 0.1 | <0.1           |
| Total Xylenes* | mg/kg | 0.3 | <0.3           |
| Total BTEX*    | mg/kg | 0.6 | <0.6           |
| Naphthalene    | mg/kg | 0.1 | <0.1           |

22/05/2015 Page 3 of 37



### Volatile Petroleum Hydrocarbons in Soil [AN433/AN434/AN410] Tested: 20/5/2015

|                            |       |     | TP01_0.05_AS          | TP02_0.5_AS  | TP03_0_AS    | TP04_0.05_AS | TP05_0_AS    |
|----------------------------|-------|-----|-----------------------|--------------|--------------|--------------|--------------|
|                            |       |     | SOIL                  | SOIL         | SOIL         | SOIL         | SOIL         |
|                            |       |     |                       |              |              |              | -            |
|                            |       |     |                       | 14/5/2015    | 14/5/2015    | 13/5/2015    | 14/5/2015    |
| PARAMETER                  | UOM   | LOR | SE139332 <b>.</b> 001 | SE139332,004 | SE139332.005 | SE139332.006 | SE139332,007 |
| TRH C6-C9                  | mg/kg | 20  | <20                   | <20          | <20          | <20          | <20          |
| Benzene (F0)               | mg/kg | 0.1 | <0.1                  | <0.1         | <0.1         | <0.1         | <0.1         |
| TRH C6-C10                 | mg/kg | 25  | <25                   | <25          | <25          | <25          | <25          |
| TRH C6-C10 minus BTEX (F1) | mg/kg | 25  | <25                   | <25          | <25          | <25          | <25          |

|                            |       |     | TP06_0.45_AS | TP07_0.05_AS | TP08_0.05_AS | TP09_0.5_AS  | TP09_1.0_AS  |
|----------------------------|-------|-----|--------------|--------------|--------------|--------------|--------------|
|                            |       |     | SOIL         | SOIL         | SOIL         | SOIL         | SOIL         |
|                            |       |     |              |              |              |              | -            |
|                            |       |     | 14/5/2015    | 14/5/2015    | 14/5/2015    | 13/5/2015    | 13/5/2015    |
| PARAMETER                  | UOM   | LOR | SE139332,008 | SE139332.009 | SE139332.011 | SE139332.013 | SE139332.014 |
| TRH C6-C9                  | mg/kg | 20  | <20          | <20          | <20          | <20          | <20          |
| Benzene (F0)               | mg/kg | 0.1 | <0.1         | <0.1         | <0.1         | <0.1         | <0.1         |
| TRH C6-C10                 | mg/kg | 25  | <25          | <25          | <25          | <25          | <25          |
| TRH C6-C10 minus BTEX (F1) | mg/kg | 25  | <25          | <25          | <25          | <25          | <25          |

|                            |       |     | TP10_0.05_AS | TP11_0_AS    | TP12_0.05_AS | TP12_0.5_AS  | TP13_0.05_AS |
|----------------------------|-------|-----|--------------|--------------|--------------|--------------|--------------|
|                            |       |     | SOIL         | SOIL         | SOIL         | SOIL         | SOIL         |
|                            |       |     |              |              |              |              | -            |
|                            |       |     |              | 14/5/2015    | 13/5/2015    | 13/5/2015    | 14/5/2015    |
| PARAMETER                  | UOM   | LOR | SE139332.016 | SE139332.018 | SE139332.019 | SE139332.020 | SE139332.022 |
| TRH C6-C9                  | mg/kg | 20  | <20          | <20          | <20          | <20          | <20          |
| Benzene (F0)               | mg/kg | 0.1 | <0.1         | <0.1         | <0.1         | <0.1         | <0.1         |
| TRH C6-C10                 | mg/kg | 25  | <25          | <25          | <25          | <25          | <25          |
| TRH C6-C10 minus BTEX (F1) | mg/kg | 25  | <25          | <25          | <25          | <25          | <25          |

|                            |       |     | TP14_0.5_AS  | TP15_0.5_AS  | TP15_1.0_AS  | Dup1_AS      | TB_AS        |
|----------------------------|-------|-----|--------------|--------------|--------------|--------------|--------------|
|                            |       |     | SOIL         | SOIL         | SOIL         | SOIL         | SOIL         |
|                            |       |     |              |              |              |              | -            |
|                            |       |     | 14/5/2015    |              | 13/5/2015    | 13/5/2015    | 13/5/2015    |
| PARAMETER                  | UOM   | LOR | SE139332.024 | SE139332.027 | SE139332.028 | SE139332.033 | SE139332.036 |
| TRH C6-C9                  | mg/kg | 20  | <20          | <20          | <20          | <20          | <20          |
| Benzene (F0)               | mg/kg | 0.1 | <0.1         | <0.1         | <0.1         | <0.1         | <0.1         |
| TRH C6-C10                 | mg/kg | 25  | <25          | <25          | <25          | <25          | <25          |
| TRH C6-C10 minus BTEX (F1) | mg/kg | 25  | <25          | <25          | <25          | <25          | <25          |

22/05/2015 Page 4 of 37



### TRH (Total Recoverable Hydrocarbons) in Soil [AN403] Tested: 19/5/2015

|                                 |       |     | TP01_0.05_AS | TP02_0.5_AS  | TP03_0_AS    | TP04_0.05_AS | TP05_0_AS    |
|---------------------------------|-------|-----|--------------|--------------|--------------|--------------|--------------|
|                                 |       |     |              |              |              |              |              |
|                                 |       |     | SOIL         | SOIL         | SOIL         | SOIL         | SOIL         |
|                                 |       |     |              |              |              |              |              |
|                                 |       |     | 13/5/2015    | 14/5/2015    | 14/5/2015    | 13/5/2015    | 14/5/2015    |
| PARAMETER                       | UOM   | LOR | SE139332,001 | SE139332,004 | SE139332,005 | SE139332,006 | SE139332,007 |
| TRH C10-C14                     | mg/kg | 20  | <20          | <20          | <20          | <20          | <20          |
| TRH C15-C28                     | mg/kg | 45  | <45          | <45          | 100          | 91           | <45          |
| TRH C29-C36                     | mg/kg | 45  | <45          | <45          | 110          | 150          | <45          |
| TRH C37-C40                     | mg/kg | 100 | <100         | <100         | <100         | <100         | <100         |
| TRH >C10-C16 (F2)               | mg/kg | 25  | <25          | <25          | <25          | <25          | <25          |
| TRH >C10-C16 (F2) - Naphthalene | mg/kg | 25  | <25          | <25          | <25          | <25          | <25          |
| TRH >C16-C34 (F3)               | mg/kg | 90  | <90          | <90          | 180          | 200          | <90          |
| TRH >C34-C40 (F4)               | mg/kg | 120 | <120         | <120         | <120         | <120         | <120         |
| TRH C10-C36 Total               | mg/kg | 110 | <110         | <110         | 210          | 240          | <110         |
| TRH C10-C40 Total               | mg/kg | 210 | <210         | <210         | <210         | 240          | <210         |

|                                  |       |     | TP06_0.45_AS | TP07_0.05_AS | TP08_0.05_AS | TP09_0.5_AS  | TP09_1.0_AS  |
|----------------------------------|-------|-----|--------------|--------------|--------------|--------------|--------------|
|                                  |       |     |              |              |              |              |              |
|                                  |       |     | SOIL         | SOIL         | SOIL         | SOIL         | SOIL         |
|                                  |       |     |              |              |              |              |              |
|                                  |       |     | 14/5/2015    | 14/5/2015    | 14/5/2015    | 13/5/2015    | 13/5/2015    |
| PARAMETER                        | UOM   | LOR | SE139332.008 | SE139332.009 | SE139332,011 | SE139332.013 | SE139332.014 |
| TRH C10-C14                      | mg/kg | 20  | <20          | <20          | <20          | <20          | <20          |
| TRH C15-C28                      | mg/kg | 45  | 80           | <45          | 100          | <45          | 220          |
| TRH C29-C36                      | mg/kg | 45  | 300          | <45          | 190          | <45          | 250          |
| TRH C37-C40                      | mg/kg | 100 | <100         | <100         | <100         | <100         | <100         |
| TRH >C10-C16 (F2)                | mg/kg | 25  | <25          | <25          | <25          | <25          | 26           |
| TRH >C10-C16 (F2) - Naphthallene | mg/kg | 25  | <25          | <25          | <25          | <25          | 26           |
| TRH >C16-C34 (F3)                | mg/kg | 90  | 270          | <90          | 240          | <90          | 390          |
| TRH >C34-C40 (F4)                | mg/kg | 120 | 130          | <120         | <120         | <120         | <120         |
| TRH C10-C36 Total                | mg/kg | 110 | 380          | <110         | 300          | <110         | 470          |
| TRH C10-C40 Total                | mg/kg | 210 | 380          | <210         | 300          | <210         | 470          |

|                                 |       |     | TP10_0.05_AS              | TP11_0_AS                 | TP12_0.05_AS              | TP12_0.5_AS               | TP13_0.05_AS              |
|---------------------------------|-------|-----|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|
|                                 |       |     | SOIL                      | SOIL                      | SOIL                      | SOIL                      | SOIL                      |
|                                 |       |     | -                         | -                         | -                         | -                         | -                         |
| PARAMETER                       | UOM   | LOR | 13/5/2015<br>SE139332,016 | 14/5/2015<br>SE139332,018 | 13/5/2015<br>SE139332,019 | 13/5/2015<br>SE139332,020 | 14/5/2015<br>SE139332,022 |
| TRH C10-C14                     | mg/kg | 20  | <20                       | <20                       | <20                       | <20                       | <20                       |
| TRH C15-C28                     | mg/kg | 45  | 94                        | 45                        | <45                       | 79                        | 50                        |
| TRH C29-C36                     | mg/kg | 45  | 100                       | <45                       | <45                       | 50                        | 83                        |
| TRH C37-C40                     | mg/kg | 100 | <100                      | <100                      | <100                      | <100                      | <100                      |
| TRH >C10-C16 (F2)               | mg/kg | 25  | <25                       | <25                       | <25                       | <25                       | <25                       |
| TRH >C10-C16 (F2) - Naphthalene | mg/kg | 25  | <25                       | <25                       | <25                       | <25                       | <25                       |
| TRH >C16-C34 (F3)               | mg/kg | 90  | 180                       | <90                       | <90                       | 120                       | 110                       |
| TRH >C34-C40 (F4)               | mg/kg | 120 | <120                      | <120                      | <120                      | <120                      | <120                      |
| TRH C10-C36 Total               | mg/kg | 110 | 200                       | <110                      | <110                      | 130                       | 130                       |
| TRH C10-C40 Total               | mg/kg | 210 | <210                      | <210                      | <210                      | <210                      | <210                      |

22/05/2015 Page 5 of 37





|                                 |       |     | TP14_0.5_AS  | TP15_0.5_AS  | TP15_1.0_AS  | Dup1_AS      | TB_AS        |
|---------------------------------|-------|-----|--------------|--------------|--------------|--------------|--------------|
|                                 |       |     |              |              |              |              |              |
|                                 |       |     | SOIL         | SOIL         | SOIL         | SOIL         | SOIL         |
|                                 |       |     |              |              |              |              |              |
|                                 |       |     | 14/5/2015    | 13/5/2015    | 13/5/2015    | 13/5/2015    | 13/5/2015    |
| PARAMETER                       | UOM   | LOR | SE139332.024 | SE139332.027 | SE139332.028 | SE139332.033 | SE139332,036 |
| TRH C10-C14                     | mg/kg | 20  | <20          | <20          | <20          | <20          | <20          |
| TRH C15-C28                     | mg/kg | 45  | 460          | <45          | <45          | 91           | <45          |
| TRH C29-C36                     | mg/kg | 45  | 270          | <45          | <45          | 330          | <45          |
| TRH C37-C40                     | mg/kg | 100 | <100         | <100         | <100         | <100         | <100         |
| TRH >C10-C16 (F2)               | mg/kg | 25  | 29           | <25          | <25          | <25          | <25          |
| TRH >C10-C16 (F2) - Naphthalene | mg/kg | 25  | 29           | <25          | <25          | <25          | <25          |
| TRH >C16-C34 (F3)               | mg/kg | 90  | 640          | <90          | <90          | 290          | <90          |
| TRH >C34-C40 (F4)               | mg/kg | 120 | <120         | <120         | <120         | 160          | <120         |
| TRH C10-C36 Total               | mg/kg | 110 | 730          | <110         | <110         | 420          | <110         |
| TRH C10-C40 Total               | mg/kg | 210 | 730          | <210         | <210         | 420          | <210         |

22/05/2015 Page 6 of 37



#### PAH (Polynuclear Aromatic Hydrocarbons) in Soil [AN420] Tested: 19/5/2015

|                                                                                                                                                         |             |     | TP01_0.05_AS         | TP02_0.5_AS          | TP03_0_AS    | TP04_0.05_AS         | TP05_0_AS            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----|----------------------|----------------------|--------------|----------------------|----------------------|
|                                                                                                                                                         |             |     | sol                  | SOIL                 | SOIL         | SO <b>I</b> L        | SOIL                 |
|                                                                                                                                                         |             |     |                      |                      |              |                      |                      |
| PARAMETER                                                                                                                                               | UOM         | LOR | 13/5/2015            | 14/5/2015            | 14/5/2015    | 13/5/2015            | 14/5/2015            |
| PARAMETER  Naphthalene                                                                                                                                  |             | 0.1 | SE139332,001<br><0.1 | SE139332,004<br><0.1 | SE139332.005 | SE139332,006<br><0,1 | SE139332,007<br><0.1 |
| ·                                                                                                                                                       | mg/kg       |     |                      |                      | 0.5          |                      |                      |
| 2-methylnaphthalene                                                                                                                                     | mg/kg       | 0.1 | <0.1                 | <0.1                 | 0.2          | <0.1                 | <0.1                 |
| 1-methylnaphthalene                                                                                                                                     | mg/kg       | 0.1 | <0.1                 | <0.1                 | 0.2          | <0.1                 | <0.1                 |
| Acenaphthylene                                                                                                                                          | mg/kg       | 0.1 | <0.1                 | <0.1                 | 1.1          | <0.1                 | <0.1                 |
| Acenaphthene                                                                                                                                            | mg/kg       | 0.1 | <0.1                 | <0.1                 | 0.6          | <0.1                 | <0.1                 |
| Fluorene                                                                                                                                                | mg/kg       | 0.1 | <0.1                 | <0.1                 | 0.3          | <0.1                 | <0.1                 |
| Phenanthrene                                                                                                                                            | mg/kg       | 0.1 | 0.2                  | 0.8                  | 3.7          | <0.1                 | 0.3                  |
| Anthracene                                                                                                                                              | mg/kg       | 0.1 | <0.1                 | 0.2                  | 0.8          | <0.1                 | <0.1                 |
| Fluoranthene                                                                                                                                            | mg/kg       | 0.1 | 0.8                  | 1.4                  | 5.1          | 0.2                  | 0.7                  |
| Pyrene                                                                                                                                                  | mg/kg       | 0.1 | 0.8                  | 1.3                  | 5.4          | 0.2                  | 0.7                  |
| Benzo(a)anthracene                                                                                                                                      | mg/kg       | 0.1 | 0.9                  | 0.6                  | 2.8          | 0.2                  | 0.4                  |
| Chrysene                                                                                                                                                | mg/kg       | 0.1 | 0.7                  | 0.4                  | 2.5          | 0.1                  | 0.4                  |
| Benzo(b&j)fluoranthene                                                                                                                                  | mg/kg       | 0.1 | 1.0                  | 0.6                  | 2.6          | 0.2                  | 0.7                  |
| Benzo(k)fluoranthene                                                                                                                                    | mg/kg       | 0.1 | 0.6                  | 0.3                  | 1.6          | 0.1                  | 0.2                  |
| Benzo(a)pyrene                                                                                                                                          | mg/kg       | 0.1 | 1.1                  | 0.6                  | 3.0          | 0.2                  | 0.5                  |
| Indeno(1,2,3-cd)pyrene                                                                                                                                  | mg/kg       | 0.1 | 1.0                  | 0.5                  | 2.4          | 0.2                  | 0.5                  |
| Dibenzo(a&h)anthracene                                                                                                                                  | mg/kg       | 0.1 | <0.1                 | <0.1                 | 0.1          | <0.1                 | <0.1                 |
| Benzo(ghi)perylene                                                                                                                                      | mg/kg       | 0.1 | 0.5                  | 0.2                  | 1.7          | 0.2                  | 0.3                  |
| Carcinogenic PAHs, BaP TEQ <lor=0*< td=""><td>TEQ</td><td>0.2</td><td>1.5</td><td>0.9</td><td>4.1</td><td>0.2</td><td>0.7</td></lor=0*<>                | TEQ         | 0.2 | 1.5                  | 0.9                  | 4.1          | 0.2                  | 0.7                  |
| Carcinogenic PAHs, BaP TEQ <lor=lor*< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td>1.6</td><td>1.0</td><td>4.1</td><td>0.3</td><td>0.8</td></lor=lor*<>    | TEQ (mg/kg) | 0.3 | 1.6                  | 1.0                  | 4.1          | 0.3                  | 0.8                  |
| Carcinogenic PAHs, BaP TEQ <lor=lor 2*<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>1.6</td><td>0.9</td><td>4.1</td><td>0.3</td><td>0.7</td></lor=lor> | TEQ (mg/kg) | 0.2 | 1.6                  | 0.9                  | 4.1          | 0.3                  | 0.7                  |
| Total PAH                                                                                                                                               | mg/kg       | 0.8 | 7.6                  | 7.0                  | 34           | 1.5                  | 4.7                  |

|                                                                                                                                                                  |             |     | TP06_0.45_AS              | TP07_0.05_AS              | TP07_0.5_AS               | TP08_0.05_AS              | TP09_0.5_AS               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|
|                                                                                                                                                                  |             |     | 1F00_0.43_A3              | 1F0/_0.03_A3              | 1F0/_0.5_A3               | 1F06_0.05_A3              | 1F09_0.5_A3               |
|                                                                                                                                                                  |             |     | SOIL                      | SOIL                      | SOIL                      | SOIL                      | SOIL                      |
|                                                                                                                                                                  |             |     |                           |                           |                           |                           |                           |
| PARAMETER                                                                                                                                                        | UOM         | LOR | 14/5/2015<br>SE139332.008 | 14/5/2015<br>SE139332.009 | 14/5/2015<br>SE139332.010 | 14/5/2015<br>SE139332.011 | 13/5/2015<br>SE139332.013 |
| Naphthalene                                                                                                                                                      | mg/kg       | 0.1 | <0.1                      | <0.1                      | <0.1                      | <0.1                      | <0.1                      |
| 2-methylnaphthalene                                                                                                                                              | mg/kg       | 0.1 | <0.1                      | <0.1                      | <0.1                      | <0.1                      | <0.1                      |
| 1-methylnaphthalene                                                                                                                                              | mg/kg       | 0.1 | <0.1                      | <0.1                      | <0.1                      | <0.1                      | <0.1                      |
| Acenaphthylene                                                                                                                                                   | mg/kg       | 0.1 | <0.1                      | <0.1                      | <0.1                      | <0.1                      | <0.1                      |
| Acenaphthene                                                                                                                                                     | mg/kg       | 0.1 | <0.1                      | <0.1                      | <0.1                      | <0.1                      | <0.1                      |
| Fluorene                                                                                                                                                         | mg/kg       | 0.1 | <0.1                      | <0.1                      | <0.1                      | <0.1                      | <0.1                      |
| Phenanthrene                                                                                                                                                     | mg/kg       | 0.1 | 0.1                       | 0.2                       | <0.1                      | 0.1                       | 0.3                       |
| Anthracene                                                                                                                                                       | mg/kg       | 0.1 | <0.1                      | <0.1                      | <0.1                      | <0.1                      | <0.1                      |
| Fluoranthene                                                                                                                                                     | mg/kg       | 0.1 | <0.1                      | 0.4                       | <0.1                      | 0.2                       | 0.9                       |
| Pyrene                                                                                                                                                           | mg/kg       | 0.1 | 0.1                       | 0.4                       | <0.1                      | 0.3                       | 0.9                       |
| Benzo(a)anthracene                                                                                                                                               | mg/kg       | 0.1 | <0.1                      | 0.3                       | <0.1                      | 0.2                       | 0.5                       |
| Chrysene                                                                                                                                                         | mg/kg       | 0.1 | <0.1                      | 0.3                       | <0.1                      | 0.2                       | 0.4                       |
| Benzo(b&j)fluoranthene                                                                                                                                           | mg/kg       | 0.1 | <0.1                      | 0.3                       | <0.1                      | 0.2                       | 0.6                       |
| Benzo(k)fluoranthene                                                                                                                                             | mg/kg       | 0.1 | <0.1                      | 0.2                       | <0.1                      | 0.1                       | 0.2                       |
| Benzo(a)pyrene                                                                                                                                                   | mg/kg       | 0.1 | <0.1                      | 0.3                       | <0.1                      | 0.1                       | 0.6                       |
| Indeno(1,2,3-cd)pyrene                                                                                                                                           | mg/kg       | 0.1 | <0.1                      | 0.3                       | <0.1                      | <0.1                      | 0.6                       |
| Dibenzo(a&h)anthracene                                                                                                                                           | mg/kg       | 0.1 | <0.1                      | <0.1                      | <0.1                      | <0.1                      | <0.1                      |
| Benzo(ghi)perylene                                                                                                                                               | mg/kg       | 0.1 | <0.1                      | 0.1                       | <0.1                      | 0.1                       | 0.3                       |
| Carcinogenic PAHs, BaP TEQ <lor=0*< td=""><td>TEQ</td><td>0.2</td><td>&lt;0.2</td><td>0.4</td><td>&lt;0.2</td><td>&lt;0.2</td><td>0.8</td></lor=0*<>             | TEQ         | 0.2 | <0.2                      | 0.4                       | <0.2                      | <0.2                      | 0.8                       |
| Carcinogenic PAHs, BaP TEQ <lor=lor*< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td>&lt;0.3</td><td>0.5</td><td>&lt;0.3</td><td>&lt;0.3</td><td>0.9</td></lor=lor*<> | TEQ (mg/kg) | 0.3 | <0.3                      | 0.5                       | <0.3                      | <0.3                      | 0.9                       |
| Carcinogenic PAHs, BaP TEQ <lor=lor 2*<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>&lt;0.2</td><td>0.4</td><td>&lt;0.2</td><td>0.2</td><td>0.8</td></lor=lor>  | TEQ (mg/kg) | 0.2 | <0.2                      | 0.4                       | <0.2                      | 0.2                       | 0.8                       |
| Total PAH                                                                                                                                                        | mg/kg       | 8.0 | <0.8                      | 2.7                       | <0.8                      | 1.5                       | 5.3                       |

22/05/2015 Page 7 of 37



#### PAH (Polynuclear Aromatic Hydrocarbons) in Soil [AN420] Tested: 19/5/2015 (continued)

|                                                                                                                                                                     |             |     |              | l             | l             | l             |              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----|--------------|---------------|---------------|---------------|--------------|
|                                                                                                                                                                     |             |     | TP09_1.0_AS  | TP09_2.1_AS   | TP10_0.05_AS  | TP10_0.5_AS   | TP11_0_AS    |
|                                                                                                                                                                     |             |     | SOIL         | SO <b>I</b> L | SO <b>I</b> L | SO <b>I</b> L | SOIL         |
|                                                                                                                                                                     |             |     |              |               |               |               |              |
|                                                                                                                                                                     |             |     |              | 13/5/2015     | 13/5/2015     | 13/5/2015     | 14/5/2015    |
| PARAMETER                                                                                                                                                           | UOM         | LOR | SE139332.014 | SE139332.015  | SE139332.016  | SE139332.017  | SE139332.018 |
| Naphthalene                                                                                                                                                         | mg/kg       | 0.1 | 0.6          | <0.1          | <0.1          | <0.1          | <0.1         |
| 2-methylnaphthalene                                                                                                                                                 | mg/kg       | 0.1 | 0.2          | <0.1          | <0.1          | <0.1          | <0.1         |
| 1-methylnaphthalene                                                                                                                                                 | mg/kg       | 0.1 | 0.1          | <0.1          | <0.1          | <0.1          | <0.1         |
| Acenaphthylene                                                                                                                                                      | mg/kg       | 0.1 | 1.5          | <0.1          | <0.1          | <0.1          | <0.1         |
| Acenaphthene                                                                                                                                                        | mg/kg       | 0.1 | 0.1          | <0.1          | <0.1          | <0.1          | <0.1         |
| Fluorene                                                                                                                                                            | mg/kg       | 0.1 | 0.2          | <0.1          | <0.1          | <0.1          | <0.1         |
| Phenanthrene                                                                                                                                                        | mg/kg       | 0.1 | 2.3          | <0.1          | <0.1          | <0.1          | 0.3          |
| Anthracene                                                                                                                                                          | mg/kg       | 0.1 | 1.1          | <0.1          | <0.1          | <0.1          | <0.1         |
| Fluoranthene                                                                                                                                                        | mg/kg       | 0.1 | 7.3          | <0.1          | <0.1          | <0.1          | 0.5          |
| Pyrene                                                                                                                                                              | mg/kg       | 0.1 | 8.3          | <0.1          | <0.1          | <0.1          | 0.6          |
| Benzo(a)anthracene                                                                                                                                                  | mg/kg       | 0.1 | 5.6          | <0.1          | <0.1          | <0.1          | 0.3          |
| Chrysene                                                                                                                                                            | mg/kg       | 0.1 | 4.1          | <0.1          | <0.1          | <0.1          | 0.3          |
| Benzo(b&j)fluoranthene                                                                                                                                              | mg/kg       | 0.1 | 8.3          | <0.1          | <0.1          | <0.1          | 0.4          |
| Benzo(k)fluoranthene                                                                                                                                                | mg/kg       | 0.1 | 3.7          | <0.1          | <0.1          | <0.1          | 0.1          |
| Benzo(a)pyrene                                                                                                                                                      | mg/kg       | 0.1 | 7.0          | <0.1          | <0.1          | <0.1          | 0.3          |
| Indeno(1,2,3-cd)pyrene                                                                                                                                              | mg/kg       | 0.1 | 4.9          | <0.1          | <0.1          | <0.1          | 0.3          |
| Dibenzo(a&h)anthracene                                                                                                                                              | mg/kg       | 0.1 | 0.4          | <0.1          | <0.1          | <0.1          | <0.1         |
| Benzo(ghi)perylene                                                                                                                                                  | mg/kg       | 0.1 | 3.2          | <0.1          | <0.1          | <0.1          | 0.1          |
| Carcinogenic PAHs, BaP TEQ <lor=0*< td=""><td>TEQ</td><td>0.2</td><td>9.5</td><td>&lt;0.2</td><td>&lt;0.2</td><td>&lt;0.2</td><td>0.4</td></lor=0*<>                | TEQ         | 0.2 | 9.5          | <0.2          | <0.2          | <0.2          | 0.4          |
| Carcinogenic PAHs, BaP TEQ <lor=lor*< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td>9.5</td><td>&lt;0.3</td><td>&lt;0.3</td><td>&lt;0.3</td><td>0.5</td></lor=lor*<>    | TEQ (mg/kg) | 0.3 | 9.5          | <0.3          | <0.3          | <0.3          | 0.5          |
| Carcinogenic PAHs, BaP TEQ <lor=lor 2*<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>9.5</td><td>&lt;0.2</td><td>&lt;0.2</td><td>&lt;0.2</td><td>0.4</td></lor=lor> | TEQ (mg/kg) | 0.2 | 9.5          | <0.2          | <0.2          | <0.2          | 0.4          |
| Total PAH                                                                                                                                                           | mg/kg       | 8.0 | 59           | <0.8          | <0.8          | <0.8          | 3.1          |
|                                                                                                                                                                     |             |     |              |               |               |               |              |

|                                                                                                                                                        |             |     | TP12_0.05_AS              | TP12_0.5_AS                      | TP13_SP_AS                | TP13_0.05_AS              | TP14_0.5_AS               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----|---------------------------|----------------------------------|---------------------------|---------------------------|---------------------------|
|                                                                                                                                                        |             |     | 1P12_0.05_A5              | 1P12_0.5_A5                      | IPIS_SP_AS                | 1P13_0.05_A5              | 1P14_0.5_A5               |
|                                                                                                                                                        |             |     | SOIL                      | SOIL                             | SOIL                      | SOIL                      | SOIL                      |
|                                                                                                                                                        |             |     |                           |                                  |                           |                           |                           |
| PARAMETER                                                                                                                                              | UOM         | LOR | 13/5/2015<br>SE139332.019 | 13/5/2015<br><b>SE139332.020</b> | 14/5/2015<br>SE139332.021 | 14/5/2015<br>SE139332.022 | 14/5/2015<br>SE139332.024 |
| Naphthalene                                                                                                                                            | mg/kg       | 0.1 | <0.1                      | 0,2                              | <0.1                      | <0.1                      | 2.1                       |
| 2-methylnaphthalene                                                                                                                                    | mg/kg       | 0.1 | <0.1                      | <0.1                             | <0.1                      | <0.1                      | 1.5                       |
| 1-methylnaphthalene                                                                                                                                    | mg/kg       | 0.1 | <0.1                      | <0.1                             | <0.1                      | <0.1                      | 1.2                       |
| Acenaphthylene                                                                                                                                         | mg/kg       | 0.1 | 0.2                       | 0.7                              | 0.2                       | 0.2                       | 0.4                       |
| Acenaphthene                                                                                                                                           | mg/kg       | 0.1 | <0.1                      | <0.1                             | <0.1                      | <0.1                      | 5.2                       |
| Fluorene                                                                                                                                               | mg/kg       | 0.1 | 0.1                       | 0.2                              | <0.1                      | <0.1                      | 4.1                       |
| Phenanthrene                                                                                                                                           | mg/kg       | 0.1 | 1.3                       | 2.1                              | 0.9                       | 1.9                       | 30                        |
| Anthracene                                                                                                                                             | mg/kg       | 0.1 | 0.2                       | 0.6                              | 0.2                       | 0.3                       | 7.4                       |
| Fluoranthene                                                                                                                                           | mg/kg       | 0.1 | 1.7                       | 5.5                              | 1.7                       | 3.7                       | 16                        |
| Pyrene                                                                                                                                                 | mg/kg       | 0.1 | 1.5                       | 5.4                              | 1.8                       | 3.6                       | 24                        |
| Benzo(a)anthracene                                                                                                                                     | mg/kg       | 0.1 | 0.8                       | 3.6                              | 1.0                       | 1.3                       | 14                        |
| Chrysene                                                                                                                                               | mg/kg       | 0.1 | 0.6                       | 2.7                              | 0.8                       | 1.1                       | 12                        |
| Benzo(b&j)fluoranthene                                                                                                                                 | mg/kg       | 0.1 | 0.7                       | 3.5                              | 0.8                       | 1.3                       | 12                        |
| Benzo(k)fluoranthene                                                                                                                                   | mg/kg       | 0.1 | 0.4                       | 1.8                              | 0.5                       | 0.7                       | 3.4                       |
| Benzo(a)pyrene                                                                                                                                         | mg/kg       | 0.1 | 0.7                       | 3.6                              | 0.9                       | 1.4                       | 10                        |
| Indeno(1,2,3-cd)pyrene                                                                                                                                 | mg/kg       | 0.1 | 0.6                       | 2.5                              | 0.7                       | 1.2                       | 1.8                       |
| Dibenzo(a&h)anthracene                                                                                                                                 | mg/kg       | 0.1 | <0.1                      | 0.1                              | <0.1                      | <0.1                      | 0.6                       |
| Benzo(ghi)perylene                                                                                                                                     | mg/kg       | 0.1 | 0.3                       | 1.3                              | 0.4                       | 0.6                       | 3.4                       |
| Carcinogenic PAHs, BaP TEQ <lor=0*< td=""><td>TEQ</td><td>0.2</td><td>0.9</td><td>4.9</td><td>1.2</td><td>1.8</td><td>14</td></lor=0*<>                | TEQ         | 0.2 | 0.9                       | 4.9                              | 1.2                       | 1.8                       | 14                        |
| Carcinogenic PAHs, BaP TEQ <lor=lor*< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td>1.0</td><td>4.9</td><td>1.3</td><td>1.9</td><td>14</td></lor=lor*<>    | TEQ (mg/kg) | 0.3 | 1.0                       | 4.9                              | 1.3                       | 1.9                       | 14                        |
| Carcinogenic PAHs, BaP TEQ <lor=lor 2*<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>1.0</td><td>4.9</td><td>1.2</td><td>1.9</td><td>14</td></lor=lor> | TEQ (mg/kg) | 0.2 | 1.0                       | 4.9                              | 1.2                       | 1.9                       | 14                        |
| Total PAH                                                                                                                                              | mg/kg       | 0.8 | 9.1                       | 34                               | 9.9                       | 17                        | 150                       |

22/05/2015 Page 8 of 37



#### PAH (Polynuclear Aromatic Hydrocarbons) in Soil [AN420] Tested: 19/5/2015 (continued)

|                                                                                                                                                                 |             |     | TP14_1.0_AS  | TP15_0.5_AS  | TP15_1.0_AS  | TP15_2.0_AS  | TP15_2.9_AS  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----|--------------|--------------|--------------|--------------|--------------|
|                                                                                                                                                                 |             |     | SOIL         | SOIL         | SOIL         | SOIL         | SOIL         |
|                                                                                                                                                                 |             |     | -            | -            | -<br>-       | -            | -            |
|                                                                                                                                                                 |             |     | 14/5/2015    | 13/5/2015    | 13/5/2015    | 13/5/2015    | 13/5/2015    |
| PARAMETER                                                                                                                                                       | UOM         | LOR | SE139332.025 | SE139332,027 | SE139332,028 | SE139332,029 | SE139332,030 |
| Naphthalene                                                                                                                                                     | mg/kg       | 0.1 | <0.1         | <0.1         | <0.1         | <0.1         | <0.1         |
| 2-methylnaphthalene                                                                                                                                             | mg/kg       | 0.1 | <0.1         | <0.1         | <0.1         | <0.1         | <0.1         |
| 1-methylnaphthalene                                                                                                                                             | mg/kg       | 0.1 | <0.1         | <0.1         | <0.1         | <0.1         | <0.1         |
| Acenaphthylene                                                                                                                                                  | mg/kg       | 0.1 | <0.1         | <0.1         | 0.1          | <0.1         | <0.1         |
| Acenaphthene                                                                                                                                                    | mg/kg       | 0.1 | <0.1         | <0.1         | <0.1         | <0.1         | <0.1         |
| Fluorene                                                                                                                                                        | mg/kg       | 0.1 | <0.1         | <0.1         | <0.1         | <0.1         | <0.1         |
| Phenanthrene                                                                                                                                                    | mg/kg       | 0.1 | <0.1         | 0.5          | 0.3          | 0.3          | <0.1         |
| Anthracene                                                                                                                                                      | mg/kg       | 0.1 | <0.1         | 0.1          | <0.1         | <0.1         | <0.1         |
| Fluoranthene                                                                                                                                                    | mg/kg       | 0.1 | <0.1         | 0.9          | 1.0          | 0.5          | <0.1         |
| Pyrene                                                                                                                                                          | mg/kg       | 0.1 | <0.1         | 0.9          | 1.1          | 0.5          | <0.1         |
| Benzo(a)anthracene                                                                                                                                              | mg/kg       | 0.1 | <0.1         | 0.5          | 0.6          | 0.3          | <0.1         |
| Chrysene                                                                                                                                                        | mg/kg       | 0.1 | <0.1         | 0.5          | 0.5          | 0.3          | <0.1         |
| Benzo(b&j)fluoranthene                                                                                                                                          | mg/kg       | 0.1 | <0.1         | 0.5          | 0.7          | 0.3          | <0.1         |
| Benzo(k)fluoranthene                                                                                                                                            | mg/kg       | 0.1 | <0.1         | 0.2          | 0.3          | 0.2          | <0.1         |
| Benzo(a)pyrene                                                                                                                                                  | mg/kg       | 0.1 | <0.1         | 0.4          | 0.7          | 0.4          | <0.1         |
| Indeno(1,2,3-cd)pyrene                                                                                                                                          | mg/kg       | 0.1 | <0.1         | 0.2          | 0.5          | 0.2          | <0.1         |
| Dibenzo(a&h)anthracene                                                                                                                                          | mg/kg       | 0.1 | <0.1         | <0.1         | <0.1         | <0.1         | <0.1         |
| Benzo(ghi)perylene                                                                                                                                              | mg/kg       | 0.1 | <0.1         | 0.2          | 0.3          | 0.1          | <0.1         |
| Carcinogenic PAHs, BaP TEQ <lor=0*< td=""><td>TEQ</td><td>0.2</td><td>&lt;0.2</td><td>0.6</td><td>1.0</td><td>0.5</td><td>&lt;0.2</td></lor=0*<>                | TEQ         | 0.2 | <0.2         | 0.6          | 1.0          | 0.5          | <0.2         |
| Carcinogenic PAHs, BaP TEQ <lor=lor*< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td>&lt;0.3</td><td>0.7</td><td>1.1</td><td>0.6</td><td>&lt;0.3</td></lor=lor*<>    | TEQ (mg/kg) | 0.3 | <0.3         | 0.7          | 1.1          | 0.6          | <0.3         |
| Carcinogenic PAHs, BaP TEQ <lor=lor 2*<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>&lt;0.2</td><td>0.6</td><td>1.0</td><td>0.5</td><td>&lt;0.2</td></lor=lor> | TEQ (mg/kg) | 0.2 | <0.2         | 0.6          | 1.0          | 0.5          | <0.2         |
| Total PAH                                                                                                                                                       | mg/kg       | 0.8 | <0.8         | 4.9          | 6.2          | 3.2          | <0.8         |

|                                                                                                                         |             |     | Dup1_AS      | Dup2_AS       |
|-------------------------------------------------------------------------------------------------------------------------|-------------|-----|--------------|---------------|
|                                                                                                                         |             |     | SOIL         | SO <b>I</b> L |
|                                                                                                                         |             |     | -            | -             |
|                                                                                                                         |             |     |              |               |
| PARAMETER                                                                                                               | UOM         | LOR | SE139332.033 | SE139332.038  |
| Naphthalene                                                                                                             | mg/kg       | 0.1 | <0.1         | <0.1          |
| 2-methylnaphthalene                                                                                                     | mg/kg       | 0.1 | <0.1         | <0.1          |
| 1-methylnaphthalene                                                                                                     | mg/kg       | 0.1 | <0.1         | <0.1          |
| Acenaphthylene                                                                                                          | mg/kg       | 0.1 | <0.1         | <0.1          |
| Acenaphthene                                                                                                            | mg/kg       | 0.1 | <0.1         | <0.1          |
| Fluorene                                                                                                                | mg/kg       | 0.1 | <0.1         | <0.1          |
| Phenanthrene                                                                                                            | mg/kg       | 0.1 | 0.1          | 0.2           |
| Anthracene                                                                                                              | mg/kg       | 0.1 | <0.1         | <0.1          |
| Fluoranthene                                                                                                            | mg/kg       | 0.1 | <0.1         | 0.5           |
| Pyrene                                                                                                                  | mg/kg       | 0.1 | <0.1         | 0.5           |
| Benzo(a)anthracene                                                                                                      | mg/kg       | 0.1 | <0.1         | 0.3           |
| Chrysene                                                                                                                | mg/kg       | 0.1 | <0.1         | 0.3           |
| Benzo(b&j)fluoranthene                                                                                                  | mg/kg       | 0.1 | <0.1         | 0.3           |
| Benzo(k)fluoranthene                                                                                                    | mg/kg       | 0.1 | <0.1         | 0.2           |
| Benzo(a)pyrene                                                                                                          | mg/kg       | 0.1 | <0.1         | 0.3           |
| Indeno(1,2,3-cd)pyrene                                                                                                  | mg/kg       | 0.1 | <0.1         | 0.2           |
| Dibenzo(a&h)anthracene                                                                                                  | mg/kg       | 0.1 | <0.1         | <0.1          |
| Benzo(ghi)perylene                                                                                                      | mg/kg       | 0.1 | <0.1         | 0.1           |
| Carcinogenic PAHs, BaP TEQ <lor=0*< td=""><td>TEQ</td><td>0.2</td><td>&lt;0.2</td><td>0.4</td></lor=0*<>                | TEQ         | 0.2 | <0.2         | 0.4           |
| Carcinogenic PAHs, BaP TEQ <lor=lor*< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td>&lt;0.3</td><td>0.5</td></lor=lor*<>    | TEQ (mg/kg) | 0.3 | <0.3         | 0.5           |
| Carcinogenic PAHs, BaP TEQ <lor=lor 2*<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>&lt;0.2</td><td>0.4</td></lor=lor> | TEQ (mg/kg) | 0.2 | <0.2         | 0.4           |
| Total PAH                                                                                                               | mg/kg       | 0.8 | <0.8         | 2.8           |

22/05/2015 Page 9 of 37





#### OC Pesticides in Soil [AN400/AN420] Tested: 19/5/2015

|                         |       |     | TD04 0.05 A.C             | TD00 05 40                | TD02 0 40                 | TD04 0.05 40              | TD05 0 40                 |
|-------------------------|-------|-----|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|
|                         |       |     | TP01_0.05_AS              | TP02_0.5_AS               | TP03_0_AS                 | TP04_0.05_AS              | TP05_0_AS                 |
|                         |       |     | SOIL                      | SOIL                      | SOIL                      | SOIL                      | SOIL                      |
|                         |       |     |                           |                           |                           |                           |                           |
| PARAMETER               | UOM   | LOR | 13/5/2015<br>SE139332,001 | 14/5/2015<br>SE139332,004 | 14/5/2015<br>SE139332,005 | 13/5/2015<br>SE139332,006 | 14/5/2015<br>SE139332,007 |
| Hexachlorobenzene (HCB) | mg/kg | 0.1 | <0.1                      | <0.1                      | <0.1                      | <0.1                      | <0.1                      |
| Alpha BHC               | mg/kg | 0.1 | <0.1                      | <0.1                      | <0.1                      | <0.1                      | <0.1                      |
| Lindane                 | mg/kg | 0.1 | <0.1                      | <0.1                      | <0.1                      | <0.1                      | <0.1                      |
| Heptachlor              | mg/kg | 0.1 | <0.1                      | <0.1                      | <0.1                      | <0.1                      | <0.1                      |
| Aldrin                  | mg/kg | 0.1 | <0.1                      | <0.1                      | <0.1                      | <0.1                      | <0.1                      |
| Beta BHC                | mg/kg | 0.1 | <0.1                      | <0.1                      | <0.1                      | <0.1                      | <0.1                      |
| Delta BHC               | mg/kg | 0.1 | <0.1                      | <0.1                      | <0.1                      | <0.1                      | <0.1                      |
| Heptachlor epoxide      | mg/kg | 0.1 | <0.1                      | <0.1                      | <0.1                      | <0.1                      | <0.1                      |
| o,p'-DDE                | mg/kg | 0.1 | <0.1                      | <0.1                      | <0.1                      | <0.1                      | <0.1                      |
| Alpha Endosulfan        | mg/kg | 0.2 | <0.2                      | <0.2                      | <0.2                      | <0.2                      | <0.2                      |
| Gamma Chlordane         | mg/kg | 0.1 | <0.1                      | <0.1                      | <0.1                      | <0.1                      | <0.1                      |
| Alpha Chlordane         | mg/kg | 0.1 | <0.1                      | <0.1                      | <0.1                      | <0.1                      | <0.1                      |
| trans-Nonachlor         | mg/kg | 0.1 | <0.1                      | <0.1                      | <0.1                      | <0.1                      | <0.1                      |
| p,p'-DDE                | mg/kg | 0.1 | <0.1                      | <0.1                      | <0.1                      | <0.1                      | <0.1                      |
| Dieldrin                | mg/kg | 0.2 | <0.2                      | <0.2                      | <0.2                      | <0.2                      | <0.2                      |
| Endrin                  | mg/kg | 0.2 | <0.2                      | <0.2                      | <0.2                      | <0.2                      | <0.2                      |
| o,p'-DDD                | mg/kg | 0.1 | <0.1                      | <0.1                      | <0.1                      | <0.1                      | <0.1                      |
| o,p'-DDT                | mg/kg | 0.1 | <0.1                      | <0.1                      | <0.1                      | <0.1                      | <0.1                      |
| Beta Endosulfan         | mg/kg | 0.2 | <0.2                      | <0.2                      | <0.2                      | <0.2                      | <0.2                      |
| p,p'-DDD                | mg/kg | 0.1 | <0.1                      | <0.1                      | <0.1                      | <0.1                      | <0.1                      |
| p,p'-DDT                | mg/kg | 0.1 | <0.1                      | <0.1                      | <0.1                      | <0.1                      | <0.1                      |
| Endosulfan sulphate     | mg/kg | 0.1 | <0.1                      | <0.1                      | <0.1                      | <0.1                      | <0.1                      |
| Endrin Aldehyde         | mg/kg | 0.1 | <0.1                      | <0.1                      | <0.1                      | <0.1                      | <0.1                      |
| Methoxychlor            | mg/kg | 0.1 | <0.1                      | <0.1                      | <0.1                      | <0.1                      | <0.1                      |
| Endrin Ketone           | mg/kg | 0.1 | <0.1                      | <0.1                      | <0.1                      | <0.1                      | <0.1                      |
| Isodrin                 | mg/kg | 0.1 | <0.1                      | <0.1                      | <0.1                      | <0.1                      | <0.1                      |
| Mirex                   | mg/kg | 0.1 | <0.1                      | <0.1                      | <0.1                      | <0.1                      | <0.1                      |
|                         | 3.3   |     |                           |                           |                           |                           |                           |

22/05/2015 Page 10 of 37



## SGS

## **ANALYTICAL RESULTS**

#### OC Pesticides in Soil [AN400/AN420] Tested: 19/5/2015 (continued)

|                         |       |     | TP06_0.45_AS   | TP07_0.05_AS   | TP08_0.05_AS   | TP09_0.5_AS    | TP10 0.05 AS   |
|-------------------------|-------|-----|----------------|----------------|----------------|----------------|----------------|
|                         |       |     |                |                |                |                |                |
|                         |       |     | SOIL           | SOIL           | SOIL           | SOIL           | SOIL           |
|                         |       |     | -<br>14/5/2015 | -<br>14/5/2015 | -<br>14/5/2015 | -<br>13/5/2015 | -<br>13/5/2015 |
| PARAMETER               | иом   | LOR | SE139332,008   | SE139332.009   | SE139332.011   | SE139332.013   | SE139332.016   |
| Hexachlorobenzene (HCB) | mg/kg | 0.1 | <0.1           | <0.1           | <0.1           | <0.1           | <0.1           |
| Alpha BHC               | mg/kg | 0.1 | <0.1           | <0.1           | <0.1           | <0.1           | <0.1           |
| Lindane                 | mg/kg | 0.1 | <0.1           | <0.1           | <0.1           | <0.1           | <0.1           |
| Heptachlor              | mg/kg | 0.1 | <0.1           | <0.1           | <0.1           | <0.1           | <0.1           |
| Aldrin                  | mg/kg | 0.1 | <0.1           | <0.1           | <0.1           | <0.1           | <0.1           |
| Beta BHC                | mg/kg | 0.1 | <0.1           | <0.1           | <0.1           | <0.1           | <0.1           |
| Delta BHC               | mg/kg | 0.1 | <0.1           | <0.1           | <0.1           | <0.1           | <0.1           |
| Heptachlor epoxide      | mg/kg | 0.1 | <0.1           | <0.1           | <0.1           | <0.1           | <0.1           |
| o,p'-DDE                | mg/kg | 0.1 | <0.1           | <0.1           | <0.1           | <0.1           | <0.1           |
| Alpha Endosulfan        | mg/kg | 0.2 | <0.2           | <0.2           | <0.2           | <0.2           | <0.2           |
| Gamma Chlordane         | mg/kg | 0.1 | <0.1           | <0.1           | <0.1           | <0.1           | <0.1           |
| Alpha Chlordane         | mg/kg | 0.1 | <0.1           | <0.1           | <0.1           | <0.1           | <0.1           |
| trans-Nonachlor         | mg/kg | 0.1 | <0.1           | <0.1           | <0.1           | <0.1           | <0.1           |
| p,p'-DDE                | mg/kg | 0.1 | <0.1           | <0.1           | <0.1           | <0.1           | <0.1           |
| Dieldrin                | mg/kg | 0.2 | <0.2           | <0.2           | <0.2           | <0.2           | <0.2           |
| Endrin                  | mg/kg | 0.2 | <0.2           | <0.2           | <0.2           | <0.2           | <0.2           |
| o,p'-DDD                | mg/kg | 0.1 | <0.1           | <0.1           | <0.1           | <0.1           | <0.1           |
| o,p'-DDT                | mg/kg | 0.1 | <0.1           | <0.1           | <0.1           | <0.1           | <0.1           |
| Beta Endosulfan         | mg/kg | 0.2 | <0.2           | <0.2           | <0.2           | <0.2           | <0.2           |
| p,p'-DDD                | mg/kg | 0.1 | <0.1           | <0.1           | <0.1           | <0.1           | <0.1           |
| p,p'-DDT                | mg/kg | 0.1 | <0.1           | <0.1           | <0.1           | <0.1           | <0.1           |
| Endosulfan sulphate     | mg/kg | 0.1 | <0.1           | <0.1           | <0.1           | <0.1           | <0.1           |
| Endrin Aldehyde         | mg/kg | 0.1 | <0.1           | <0.1           | <0.1           | <0.1           | <0.1           |
| Methoxych <b>l</b> or   | mg/kg | 0.1 | <0.1           | <0.1           | <0.1           | <0.1           | <0.1           |
| Endrin Ketone           | mg/kg | 0.1 | <0.1           | <0.1           | <0.1           | <0.1           | <0.1           |
| Isodrin                 | mg/kg | 0.1 | <0.1           | <0.1           | <0.1           | <0.1           | <0.1           |
| Mirex                   | mg/kg | 0.1 | <0.1           | <0.1           | <0.1           | <0.1           | <0.1           |

22/05/2015 Page 11 of 37





OC Pesticides in Soil [AN400/AN420] Tested: 19/5/2015 (continued)

|                         |       |     | TP11_0_A\$   | TP12_0.5_AS  | TP13_0.05_AS | TP14_0.5_AS  | TP15_0.5_AS  |
|-------------------------|-------|-----|--------------|--------------|--------------|--------------|--------------|
|                         |       |     | SOIL         | SOIL         | SOIL         | SOIL         | SOIL         |
|                         |       |     |              |              |              |              |              |
|                         |       |     | 14/5/2015    | 13/5/2015    | 14/5/2015    | 14/5/2015    | 13/5/2015    |
| PARAMETER               | UOM   | LOR | SE139332,018 | SE139332,020 | SE139332,022 | SE139332.024 | SE139332.027 |
| Hexachlorobenzene (HCB) | mg/kg | 0.1 | <0.1         | <0.1         | <0.1         | <0.1         | <0.1         |
| Alpha BHC               | mg/kg | 0.1 | <0.1         | <0.1         | <0.1         | <0.1         | <0.1         |
| Lindane                 | mg/kg | 0.1 | <0.1         | <0.1         | <0.1         | <0.1         | <0.1         |
| Heptachlor              | mg/kg | 0.1 | <0.1         | <0.1         | <0.1         | <0.1         | <0.1         |
| Aldrin                  | mg/kg | 0.1 | <0.1         | <0.1         | <0.1         | <0.1         | <0.1         |
| Beta BHC                | mg/kg | 0.1 | <0.1         | <0.1         | <0.1         | <0.1         | <0.1         |
| Delta BHC               | mg/kg | 0.1 | <0.1         | <0.1         | <0.1         | <0.1         | <0.1         |
| Heptachlor epoxide      | mg/kg | 0.1 | <0.1         | <0.1         | <0.1         | <0.1         | <0.1         |
| o,p'-DDE                | mg/kg | 0.1 | <0.1         | <0.1         | <0.1         | <0.1         | <0.1         |
| Alpha Endosulfan        | mg/kg | 0.2 | <0.2         | <0.2         | <0.2         | <0.2         | <0.2         |
| Gamma Chlordane         | mg/kg | 0.1 | <0.1         | <0.1         | <0.1         | <0.1         | <0.1         |
| Alpha Chlordane         | mg/kg | 0.1 | <0.1         | <0.1         | <0.1         | <0.1         | <0.1         |
| trans-Nonachlor         | mg/kg | 0.1 | <0.1         | <0.1         | <0.1         | <0.1         | <0.1         |
| p,p'-DDE                | mg/kg | 0.1 | <0.1         | <0.1         | <0.1         | <0.1         | <0.1         |
| Dieldrin                | mg/kg | 0.2 | <0.2         | <0.2         | <0.2         | <0.2         | <0.2         |
| Endrin                  | mg/kg | 0.2 | <0.2         | <0.2         | <0.2         | <0.2         | <0.2         |
| o,p'-DDD                | mg/kg | 0.1 | <0.1         | <0.1         | <0.1         | <0.1         | <0.1         |
| o,p'-DDT                | mg/kg | 0.1 | <0.1         | <0.1         | <0.1         | <0.1         | <0.1         |
| Beta Endosulfan         | mg/kg | 0.2 | <0.2         | <0.2         | <0.2         | <0.2         | <0.2         |
| p,p'-DDD                | mg/kg | 0.1 | <0.1         | <0.1         | <0.1         | <0.1         | <0.1         |
| p,p'-DDT                | mg/kg | 0.1 | <0.1         | <0.1         | <0.1         | <0.1         | <0.1         |
| Endosulfan sulphate     | mg/kg | 0.1 | <0.1         | <0.1         | <0.1         | <0.1         | <0.1         |
| Endrin Aldehyde         | mg/kg | 0.1 | <0.1         | <0.1         | <0.1         | <0.1         | <0.1         |
| Methoxychlor            | mg/kg | 0.1 | <0.1         | <0.1         | <0.1         | <0.1         | <0.1         |
| Endrin Ketone           | mg/kg | 0.1 | <0.1         | <0.1         | <0.1         | <0.1         | <0.1         |
| Isodrin                 | mg/kg | 0.1 | <0.1         | <0.1         | <0.1         | <0.1         | <0.1         |
| Mirex                   | mg/kg | 0.1 | <0.1         | <0.1         | <0.1         | <0.1         | <0.1         |

22/05/2015 Page 12 of 37



#### OC Pesticides in Soil [AN400/AN420] Tested: 19/5/2015 (continued)

|                         |       |     | Dup1_AS      |
|-------------------------|-------|-----|--------------|
|                         |       |     | SOIL         |
|                         |       |     |              |
|                         |       |     |              |
| PARAMETER               | UOM   | LOR | SE139332,033 |
| Hexachlorobenzene (HCB) | mg/kg | 0.1 | <0.1         |
| Alpha BHC               | mg/kg | 0.1 | <0.1         |
| Lindane                 | mg/kg | 0.1 | <0.1         |
| Heptachlor              | mg/kg | 0.1 | <0.1         |
| Aldrin                  | mg/kg | 0.1 | <0.1         |
| Beta BHC                | mg/kg | 0.1 | <0.1         |
| Delta BHC               | mg/kg | 0.1 | <0.1         |
| Heptachlor epoxide      | mg/kg | 0.1 | <0.1         |
| o,p'-DDE                | mg/kg | 0.1 | <0.1         |
| Alpha Endosulfan        | mg/kg | 0.2 | <0.2         |
| Gamma Chlordane         | mg/kg | 0.1 | <0.1         |
| Alpha Chlordane         | mg/kg | 0.1 | <0.1         |
| trans-Nonachlor         | mg/kg | 0.1 | <0.1         |
| p,p'-DDE                | mg/kg | 0.1 | <0.1         |
| Dieldrin                | mg/kg | 0.2 | <0.2         |
| Endrin                  | mg/kg | 0.2 | <0.2         |
| o,p'-DDD                | mg/kg | 0.1 | <0.1         |
| o,p'-DDT                | mg/kg | 0.1 | <0.1         |
| Beta Endosulfan         | mg/kg | 0.2 | <0.2         |
| p,p'-DDD                | mg/kg | 0.1 | <0.1         |
| p,p'-DDT                | mg/kg | 0.1 | <0.1         |
| Endosulfan sulphate     | mg/kg | 0.1 | <0.1         |
| Endrin Aldehyde         | mg/kg | 0.1 | <0.1         |
| Methoxychlor            | mg/kg | 0,1 | <0.1         |
| Endrin Ketone           | mg/kg | 0.1 | <0.1         |
| Isodrin                 | mg/kg | 0.1 | <0.1         |
| Mirex                   | mg/kg | 0.1 | <0.1         |

22/05/2015 Page 13 of 37



#### OP Pesticides in Soil [AN400/AN420] Tested: 19/5/2015

|                                   |       |     | TP01_0.05_AS                                    | TP02_0.5_AS                                     | TP03_0_AS                                                | TP04_0.05_AS                                                  | TP05_0_AS                              |
|-----------------------------------|-------|-----|-------------------------------------------------|-------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------|----------------------------------------|
| PARAMETER                         | UOM   | LOR | SO <b>I</b> L<br>-<br>13/5/2015<br>SE139332.001 | SO <b>I</b> L<br>-<br>14/5/2015<br>SE139332.004 | SO <b>I</b> L<br>-<br>14/5/2015<br>SE139332 <u>.</u> 005 | SO <b>I</b> L<br>-<br>13/5/2015<br><b>SE139332<u>.</u>006</b> | SOIL<br>-<br>14/5/2015<br>SE139332,007 |
| Dichlorvos                        | mg/kg | 0.5 | <0.5                                            | <0.5                                            | <0.5                                                     | <0.5                                                          | <0.5                                   |
| Dimethoate                        | mg/kg | 0.5 | <0.5                                            | <0.5                                            | <0.5                                                     | <0.5                                                          | <0.5                                   |
| Diazinon (Dimpylate)              | mg/kg | 0.5 | <0.5                                            | <0.5                                            | <0.5                                                     | <0.5                                                          | <0.5                                   |
| Fenitrothion                      | mg/kg | 0.2 | <0.2                                            | <0.2                                            | <0.2                                                     | <0.2                                                          | <0.2                                   |
| Malathion                         | mg/kg | 0.2 | <0.2                                            | <0.2                                            | <0.2                                                     | <0.2                                                          | <0.2                                   |
| Chlorpyrifos (Chlorpyrifos Ethyl) | mg/kg | 0.2 | <0.2                                            | <0.2                                            | <0.2                                                     | <0.2                                                          | <0.2                                   |
| Parathion-ethyl (Parathion)       | mg/kg | 0.2 | <0.2                                            | <0.2                                            | <0.2                                                     | <0.2                                                          | <0.2                                   |
| Bromophos Ethyl                   | mg/kg | 0.2 | <0.2                                            | <0.2                                            | <0.2                                                     | <0.2                                                          | <0.2                                   |
| Methidathion                      | mg/kg | 0.5 | <0.5                                            | <0.5                                            | <0.5                                                     | <0.5                                                          | <0.5                                   |
| Ethion                            | mg/kg | 0.2 | <0.2                                            | <0.2                                            | <0.2                                                     | <0.2                                                          | <0.2                                   |
| Azinphos-methyl (Guthion)         | mg/kg | 0.2 | <0.2                                            | <0.2                                            | <0.2                                                     | <0.2                                                          | <0.2                                   |

|                                   |       |     | TP06_0.45_AS | TP07_0.05_AS | TP08_0.05_AS | TP09_0.5_AS  | TP10_0.05_AS |
|-----------------------------------|-------|-----|--------------|--------------|--------------|--------------|--------------|
|                                   |       |     | SOIL         | SOIL         | SOIL         | SOIL         | SOIL         |
|                                   |       |     |              |              |              |              | -            |
|                                   |       |     | 14/5/2015    | 14/5/2015    | 14/5/2015    |              | 13/5/2015    |
| PARAMETER                         | UOM   | LOR | SE139332.008 | SE139332.009 | SE139332.011 | SE139332.013 | SE139332.016 |
| Dichlorvos                        | mg/kg | 0.5 | <0.5         | <0.5         | <0.5         | <0.5         | <0.5         |
| Dimethoate                        | mg/kg | 0.5 | <0.5         | <0.5         | <0.5         | <0.5         | <0.5         |
| Diazinon (Dimpylate)              | mg/kg | 0.5 | <0.5         | <0.5         | <0.5         | <0.5         | <0.5         |
| Fenitrothion                      | mg/kg | 0.2 | <0.2         | <0.2         | <0.2         | <0.2         | <0.2         |
| Malathion                         | mg/kg | 0.2 | <0.2         | <0.2         | <0.2         | <0.2         | <0.2         |
| Chlorpyrifos (Chlorpyrifos Ethyl) | mg/kg | 0.2 | <0.2         | <0.2         | <0.2         | <0.2         | <0.2         |
| Parathion-ethyl (Parathion)       | mg/kg | 0.2 | <0.2         | <0.2         | <0.2         | <0.2         | <0.2         |
| Bromophos Ethyl                   | mg/kg | 0.2 | <0.2         | <0.2         | <0.2         | <0.2         | <0.2         |
| Methidathion                      | mg/kg | 0.5 | <0.5         | <0.5         | <0.5         | <0.5         | <0.5         |
| Ethion                            | mg/kg | 0.2 | <0.2         | <0.2         | <0.2         | <0.2         | <0.2         |
| Azinphos-methyl (Guthion)         | mg/kg | 0.2 | <0.2         | <0.2         | <0.2         | <0.2         | <0.2         |

|                                   |       |     | TP11_0_AS                                       | TP12_0.5_AS                            | TP13_0.05_AS                                             | TP14_0.5_AS                                     | TP15_0.5_AS                            |
|-----------------------------------|-------|-----|-------------------------------------------------|----------------------------------------|----------------------------------------------------------|-------------------------------------------------|----------------------------------------|
| PARAMETER                         | UOM   | LOR | SO <b>I</b> L<br>-<br>14/5/2015<br>SE139332.018 | SOIL<br>-<br>13/5/2015<br>SE139332.020 | SO <b>I</b> L<br>-<br>14/5/2015<br>SE139332 <b>.</b> 022 | SO <b>I</b> L<br>-<br>14/5/2015<br>SE139332.024 | SOIL<br>-<br>13/5/2015<br>SE139332,027 |
| Dichlorvos                        | mg/kg | 0.5 | <0.5                                            | <0.5                                   | <0.5                                                     | <0.5                                            | <0.5                                   |
| Dimethoate                        | mg/kg | 0.5 | <0.5                                            | <0.5                                   | <0.5                                                     | <0.5                                            | <0.5                                   |
| Diazinon (Dimpylate)              | mg/kg | 0.5 | <0.5                                            | <0.5                                   | <0.5                                                     | <0.5                                            | <0.5                                   |
| Fenitrothion                      | mg/kg | 0.2 | <0.2                                            | <0.2                                   | <0.2                                                     | <0.2                                            | <0.2                                   |
| Malathion                         | mg/kg | 0,2 | <0.2                                            | <0.2                                   | <0.2                                                     | <0.2                                            | <0.2                                   |
| Chlorpyrifos (Chlorpyrifos Ethyl) | mg/kg | 0.2 | <0.2                                            | <0.2                                   | <0.2                                                     | <0.2                                            | <0.2                                   |
| Parathion-ethyl (Parathion)       | mg/kg | 0,2 | <0.2                                            | <0.2                                   | <0.2                                                     | <0.2                                            | <0.2                                   |
| Bromophos Ethyl                   | mg/kg | 0.2 | <0.2                                            | <0.2                                   | <0.2                                                     | <0.2                                            | <0.2                                   |
| Methidathion                      | mg/kg | 0.5 | <0.5                                            | <0.5                                   | <0.5                                                     | <0.5                                            | <0.5                                   |
| Ethion                            | mg/kg | 0.2 | <0.2                                            | <0.2                                   | <0.2                                                     | <0.2                                            | <0.2                                   |
| Azinphos-methyl (Guthion)         | mg/kg | 0.2 | <0.2                                            | <0.2                                   | <0.2                                                     | <0.2                                            | <0.2                                   |

22/05/2015 Page 14 of 37





#### OP Pesticides in Soil [AN400/AN420] Tested: 19/5/2015 (continued)

| PARAMETER                         | UOM   | LOR | Dup1_AS  SOIL - 13/5/2015 SE139332,033 |
|-----------------------------------|-------|-----|----------------------------------------|
| Dichlorvos                        | mg/kg | 0.5 | <0.5                                   |
| Dimethoate                        | mg/kg | 0.5 | <0.5                                   |
| Diazinon (Dimpylate)              | mg/kg | 0.5 | <0.5                                   |
| Fenitrothion                      | mg/kg | 0.2 | <0.2                                   |
| Malathion                         | mg/kg | 0.2 | <0.2                                   |
| Chlorpyrifos (Chlorpyrifos Ethyl) | mg/kg | 0.2 | <0.2                                   |
| Parathion-ethyl (Parathion)       | mg/kg | 0,2 | <0.2                                   |
| Bromophos Ethyl                   | mg/kg | 0.2 | <0.2                                   |
| Methidathion                      | mg/kg | 0.5 | <0.5                                   |
| Ethion                            | mg/kg | 0.2 | <0.2                                   |
| Azinphos-methyl (Guthion)         | mg/kg | 0.2 | <0.2                                   |

22/05/2015 Page 15 of 37



#### PCBs in Soil [AN400/AN420] Tested: 19/5/2015

|                        |       |     | TP01_0.05_AS          | TP02_0.5_AS  | TP03_0_AS    | TP04_0.05_AS | TP05_0_AS    |
|------------------------|-------|-----|-----------------------|--------------|--------------|--------------|--------------|
|                        |       |     | SOIL                  | SOIL         | SOIL         | SOIL         | SOIL         |
|                        |       |     |                       |              |              |              |              |
|                        |       |     | 13/5/2015             | 14/5/2015    | 14/5/2015    | 13/5/2015    | 14/5/2015    |
| PARAMETER              | UOM   | LOR | SE139332 <b>.</b> 001 | SE139332.004 | SE139332,005 | SE139332.006 | SE139332.007 |
| Arochlor 1016          | mg/kg | 0.2 | <0.2                  | <0.2         | <0.2         | <0.2         | <0.2         |
| Arochlor 1221          | mg/kg | 0.2 | <0.2                  | <0.2         | <0.2         | <0.2         | <0.2         |
| Arochlor 1232          | mg/kg | 0.2 | <0.2                  | <0.2         | <0.2         | <0.2         | <0.2         |
| Arochlor 1242          | mg/kg | 0.2 | <0.2                  | <0.2         | <0.2         | <0.2         | <0.2         |
| Arochlor 1248          | mg/kg | 0.2 | <0.2                  | <0.2         | <0.2         | <0.2         | <0.2         |
| Arochlor 1254          | mg/kg | 0.2 | <0.2                  | <0.2         | <0.2         | <0.2         | <0.2         |
| Arochlor 1260          | mg/kg | 0,2 | <0.2                  | <0.2         | <0.2         | <0.2         | <0.2         |
| Arochlor 1262          | mg/kg | 0.2 | <0.2                  | <0.2         | <0.2         | <0.2         | <0.2         |
| Arochlor 1268          | mg/kg | 0.2 | <0.2                  | <0.2         | <0.2         | <0.2         | <0.2         |
| Total PCBs (Arochlors) | mg/kg | 1   | <1                    | <1           | <1           | <1           | <1           |

|                        |       |     | TP06_0.45_AS | TP07_0.05_AS | TP08_0.05_AS | TP09_0.5_AS  | TP10_0.05_AS |
|------------------------|-------|-----|--------------|--------------|--------------|--------------|--------------|
|                        |       |     | SOIL         | SOIL         | SOIL         | SOIL         | SOIL         |
|                        |       |     | -            | -            | - 30IL       | - 30IL       | -            |
|                        |       |     | 14/5/2015    | 14/5/2015    | 14/5/2015    | 13/5/2015    | 13/5/2015    |
| PARAMETER              | UOM   | LOR | SE139332,008 | SE139332,009 | SE139332,011 | SE139332.013 | SE139332.016 |
| Arochlor 1016          | mg/kg | 0.2 | <0.2         | <0.2         | <0.2         | <0.2         | <0.2         |
| Arochlor 1221          | mg/kg | 0.2 | <0.2         | <0.2         | <0.2         | <0.2         | <0.2         |
| Arochlor 1232          | mg/kg | 0.2 | <0.2         | <0.2         | <0.2         | <0.2         | <0.2         |
| Arochlor 1242          | mg/kg | 0.2 | <0.2         | <0.2         | <0.2         | <0.2         | <0.2         |
| Arochlor 1248          | mg/kg | 0.2 | <0.2         | <0.2         | <0.2         | <0.2         | <0.2         |
| Arochlor 1254          | mg/kg | 0.2 | <0.2         | <0.2         | <0.2         | <0.2         | <0.2         |
| Arochlor 1260          | mg/kg | 0.2 | <0.2         | <0.2         | <0.2         | <0.2         | <0.2         |
| Arochlor 1262          | mg/kg | 0.2 | <0.2         | <0.2         | <0.2         | <0.2         | <0.2         |
| Arochlor 1268          | mg/kg | 0.2 | <0.2         | <0.2         | <0.2         | <0.2         | <0.2         |
| Total PCBs (Arochlors) | mg/kg | 1   | <1           | <1           | <1           | <1           | <1           |

|                        |       |     | TP11_0_AS             | TP12_0.5_AS  | TP13_0.05_AS | TP14_0.5_AS  | TP15_0.5_AS  |
|------------------------|-------|-----|-----------------------|--------------|--------------|--------------|--------------|
|                        |       |     | SOIL                  | SOIL         | SOIL         | SOIL         | SOIL         |
|                        |       |     |                       |              |              |              |              |
|                        |       |     | 14/5/2015             | 13/5/2015    | 14/5/2015    | 14/5/2015    | 13/5/2015    |
| PARAMETER              | UOM   | LOR | SE139332 <b>.</b> 018 | SE139332,020 | SE139332,022 | SE139332.024 | SE139332,027 |
| Arochlor 1016          | mg/kg | 0.2 | <0.2                  | <0.2         | <0.2         | <0.2         | <0.2         |
| Arochlor 1221          | mg/kg | 0.2 | <0.2                  | <0.2         | <0.2         | <0.2         | <0.2         |
| Arochlor 1232          | mg/kg | 0.2 | <0.2                  | <0.2         | <0.2         | <0.2         | <0.2         |
| Arochlor 1242          | mg/kg | 0.2 | <0.2                  | <0.2         | <0.2         | <0.2         | <0.2         |
| Arochlor 1248          | mg/kg | 0.2 | <0.2                  | <0.2         | <0.2         | <0.2         | <0.2         |
| Arochlor 1254          | mg/kg | 0.2 | <0.2                  | <0.2         | <0.2         | <0.2         | <0.2         |
| Arochlor 1260          | mg/kg | 0.2 | <0.2                  | <0.2         | <0.2         | <0.2         | <0.2         |
| Arochlor 1262          | mg/kg | 0.2 | <0.2                  | <0.2         | <0.2         | <0.2         | <0.2         |
| Arochlor 1268          | mg/kg | 0,2 | <0.2                  | <0.2         | <0.2         | <0.2         | <0.2         |
| Total PCBs (Arochlors) | mg/kg | 1   | <1                    | <1           | <1           | <1           | <1           |

22/05/2015 Page 16 of 37





PCBs in Soil [AN400/AN420] Tested: 19/5/2015 (continued)

|                        |       |     | Dup1_AS        |
|------------------------|-------|-----|----------------|
|                        |       |     | SOIL           |
|                        |       |     | -<br>13/5/2015 |
| PARAMETER              | UOM   | LOR | SE139332,033   |
| Arochlor 1016          | mg/kg | 0.2 | <0.2           |
| Arochlor 1221          | mg/kg | 0.2 | <0.2           |
| Arochlor 1232          | mg/kg | 0.2 | <0.2           |
| Arochlor 1242          | mg/kg | 0.2 | <0.2           |
| Arochlor 1248          | mg/kg | 0.2 | <0.2           |
| Arochlor 1254          | mg/kg | 0.2 | <0.2           |
| Arochlor 1260          | mg/kg | 0,2 | <0.2           |
| Arochlor 1262          | mg/kg | 0.2 | <0.2           |
| Arochlor 1268          | mg/kg | 0.2 | <0.2           |
| Total PCBs (Arochlors) | mg/kg | 1   | <1             |

22/05/2015 Page 17 of 37





#### pH in soil (1:5) [AN101] Tested: 21/5/2015

|           |          |     | TP01_0.05_AS | TP01_0.5_AS  | TP02_0.5_AS  | TP03_0_AS    | TP04_0.05_AS |
|-----------|----------|-----|--------------|--------------|--------------|--------------|--------------|
|           |          |     | SOIL         | SOIL         | SOIL         | SOIL         | SOIL         |
|           |          |     |              |              |              |              | -            |
|           |          |     |              | 13/5/2015    | 14/5/2015    | 14/5/2015    | 13/5/2015    |
| PARAMETER | UOM      | LOR | SE139332,001 | SE139332,002 | SE139332,004 | SE139332,005 | SE139332,006 |
| рН        | pH Units | -   | 8.1          | 5.5          | 8.2          | 7.2          | 8.9          |

|           |          |     | TP05_0_AS    | TP06_0.45_AS | TP07_0.05_AS | TP08_0.05_AS | TP09_0.5_AS  |
|-----------|----------|-----|--------------|--------------|--------------|--------------|--------------|
|           |          |     | SOIL         | SOIL         | SOIL         | SOIL         | SOIL         |
|           |          |     |              |              |              |              |              |
|           |          |     | 14/5/2015    | 14/5/2015    | 14/5/2015    | 14/5/2015    | 13/5/2015    |
| PARAMETER | UOM      | LOR | SE139332.007 | SE139332.008 | SE139332.009 | SE139332.011 | SE139332.013 |
| рН        | pH Units | -   | 7.6          | 7.9          | 8.3          | 9.1          | 8.8          |

|           |          |     | TP10_0.05_AS | TP11_0_AS    | TP12_0.5_AS  | TP13_0.05_AS | TP14_0.5_AS  |
|-----------|----------|-----|--------------|--------------|--------------|--------------|--------------|
|           |          |     | SOIL         | SOIL         | SOIL         | SOIL         | SOIL         |
|           |          |     |              |              |              |              | -            |
|           |          |     |              | 14/5/2015    | 13/5/2015    | 14/5/2015    | 14/5/2015    |
| PARAMETER | UOM      | LOR | SE139332.016 | SE139332.018 | SE139332.020 | SE139332.022 | SE139332.024 |
| рН        | pH Units | -   | 8.5          | 8.5          | 7.6          | 9.0          | 7.4          |

|           |          |     | TP15_0.5_AS    |
|-----------|----------|-----|----------------|
|           |          |     | SOIL           |
|           |          |     | -<br>13/5/2015 |
| PARAMETER | UOM      | LOR | SE139332,027   |
| рН        | pH Units | -   | 8.2            |

22/05/2015 Page 18 of 37



#### Exchangeable Cations and Cation Exchange Capacity (CEC/ESP/SAR) [AN122] Tested: 20/5/2015

| PARAMETER                          | иом      | LOR  | TP01_0.5_AS  SOIL - 13/5/2015 SE139332,002 |
|------------------------------------|----------|------|--------------------------------------------|
| Exchangeable Sodium, Na            | mg/kg    | 2    | 150                                        |
| Exchangeable Sodium, Na            | meq/100g | 0.01 | 0.67                                       |
| Exchangeable Sodium Percentage*    | %        | 0.1  | 5.4                                        |
| Exchangeable Potassium, K          | mg/kg    | 2    | 130                                        |
| Exchangeable Potassium, K          | meq/100g | 0.01 | 0.34                                       |
| Exchangeable Potassium Percentage* | %        | 0.1  | 2.7                                        |
| Exchangeable Calcium, Ca           | mg/kg    | 2    | 880                                        |
| Exchangeable Calcium, Ca           | meq/100g | 0.01 | 4.4                                        |
| Exchangeable Calcium Percentage*   | %        | 0.1  | 35.9                                       |
| Exchangeable Magnesium, Mg         | mg/kg    | 2    | 840                                        |
| Exchangeable Magnesium, Mg         | meq/100g | 0.02 | 6.9                                        |
| Exchangeable Magnesium Percentage* | %        | 0.1  | 56.0                                       |
| Cation Exchange Capacity           | meq/100g | 0.02 | 12                                         |

22/05/2015 Page 19 of 37



#### Total Recoverable Metals in Soil by ICPOES from EPA 200.8 Digest [AN040/AN320] Tested: 20/5/2015

|              |       |     | TP01_0.05_AS              | TP02_0.5_AS               | TP03_0_AS                 | TP04_0.05_AS              | TP05_0_AS                 |
|--------------|-------|-----|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|
|              |       |     | SOIL                      | SOIL                      | SOIL                      | SOIL                      | SOIL                      |
|              |       |     | -                         | -                         | -                         | -                         | -                         |
| PARAMETER    | UOM   | LOR | 13/5/2015<br>SE139332,001 | 14/5/2015<br>SE139332.004 | 14/5/2015<br>SE139332,005 | 13/5/2015<br>SE139332.006 | 14/5/2015<br>SE139332,007 |
| Arsenic, As  | mg/kg | 3   | 4                         | 11                        | 6                         | 4                         | 3                         |
| Cadmium, Cd  | mg/kg | 0.3 | 0.7                       | 0.5                       | 0.4                       | 0.6                       | <0.3                      |
| Chromium, Cr | mg/kg | 0.3 | 19                        | 22                        | 24                        | 18                        | 13                        |
| Copper, Cu   | mg/kg | 0.5 | 51                        | 20                        | 26                        | 86                        | 15                        |
| Lead, Pb     | mg/kg | 1   | 170                       | 110                       | 210                       | 120                       | 51                        |
| Nickel, Ni   | mg/kg | 0.5 | 62                        | 11                        | 25                        | 67                        | 18                        |
| Zinc, Zn     | mg/kg | 0.5 | 260                       | 71                        | 150                       | 160                       | 67                        |

|              |       |     | TP06_0.45_AS   | TP07_0.05_AS   | TP07_0.5_AS    | TP08_0.05_AS   | TP09_0.5_AS    |
|--------------|-------|-----|----------------|----------------|----------------|----------------|----------------|
|              |       |     | SOIL           | SOIL           | SOIL           | SOIL           | SOIL           |
|              |       |     | -<br>14/5/2015 | -<br>14/5/2015 | -<br>14/5/2015 | -<br>14/5/2015 | -<br>13/5/2015 |
| PARAMETER    | UOM   | LOR | SE139332.008   | SE139332.009   | SE139332.010   | SE139332.011   | SE139332.013   |
| Arsenic, As  | mg/kg | 3   | 4              | <3             | 12             | <3             | <3             |
| Cadmium, Cd  | mg/kg | 0.3 | <0.3           | 0.3            | 0.4            | 0.4            | 0.4            |
| Chromium, Cr | mg/kg | 0.3 | 38             | 15             | 25             | 42             | 12             |
| Copper, Cu   | mg/kg | 0.5 | 15             | 43             | 1.1            | 40             | 57             |
| Lead, Pb     | mg/kg | 1   | 17             | 34             | 15             | 16             | 59             |
| Nickel, Ni   | mg/kg | 0.5 | 36             | 11             | 0.7            | 130            | 77             |
| Zinc, Zn     | mg/kg | 0.5 | 44             | 47             | 8.0            | 67             | 79             |

|              |       |     | TP09_1.0_AS  | TP09_2.1_AS  | TP10_0.05_AS | TP10_0.5_AS  | TP11_0_AS    |
|--------------|-------|-----|--------------|--------------|--------------|--------------|--------------|
|              |       |     |              |              |              |              |              |
|              |       |     | SOIL         | SOIL         | SOIL         | SOIL         | SOIL         |
|              |       |     |              |              |              |              |              |
|              |       |     |              |              |              |              | 14/5/2015    |
| PARAMETER    | UOM   | LOR | SE139332.014 | SE139332.015 | SE139332.016 | SE139332.017 | SE139332.018 |
| Arsenic, As  | mg/kg | 3   | 4            | <3           | <3           | 3            | 6            |
| Cadmium, Cd  | mg/kg | 0.3 | 0.3          | <0.3         | 0.5          | <0.3         | 0.4          |
| Chromium, Cr | mg/kg | 0.3 | 12           | 2.7          | 31           | 4.4          | 15           |
| Copper, Cu   | mg/kg | 0.5 | 33           | 9.5          | 110          | 2.9          | 48           |
| Lead, Pb     | mg/kg | 1   | 61           | 7            | 76           | 8            | 130          |
| Nickel, Ni   | mg/kg | 0.5 | 13           | <0.5         | 91           | <0.5         | 35           |
| Zinc, Zn     | mg/kg | 0.5 | 52           | 4.2          | 180          | 3.6          | 400          |

|              |       |     | TP12_0.05_AS | TP12_0.5_AS  | TP13_SP_AS   | TP13_0.05_AS | TP14_0.5_AS  |
|--------------|-------|-----|--------------|--------------|--------------|--------------|--------------|
|              |       |     |              |              |              |              |              |
|              |       |     | SOIL         | SOIL         | SOIL         | SOIL         | SOIL         |
|              |       |     |              |              |              |              |              |
|              |       |     | 13/5/2015    | 13/5/2015    | 14/5/2015    | 14/5/2015    | 14/5/2015    |
| PARAMETER    | UOM   | LOR | SE139332.019 | SE139332.020 | SE139332.021 | SE139332.022 | SE139332.024 |
| Arsenic, As  | mg/kg | 3   | <3           | 15           | <3           | 4            | 7            |
| Cadmium, Cd  | mg/kg | 0.3 | 0.4          | 1.1          | <0.3         | 0.4          | 0.5          |
| Chromium, Cr | mg/kg | 0.3 | 9.0          | 27           | 8.0          | 15           | 15           |
| Copper, Cu   | mg/kg | 0.5 | 79           | 13           | 32           | 35           | 31           |
| Lead, Pb     | mg/kg | 1   | 64           | 490          | 25           | 64           | 82           |
| Nickel, Ni   | mg/kg | 0.5 | 61           | 3.3          | 7.5          | 23           | 39           |
| Zinc, Zn     | mg/kg | 0.5 | 190          | 2400         | 56           | 70           | 140          |

22/05/2015 Page 20 of 37



Total Recoverable Metals in Soil by ICPOES from EPA 200.8 Digest [AN040/AN320] Tested: 20/5/2015 (continued)

|              |       |     | TP14_1.0_AS  | TP15_0.5_AS  | TP15_1.0_AS  | TP15_2.0_AS  | TP15_2.9_AS  |
|--------------|-------|-----|--------------|--------------|--------------|--------------|--------------|
|              |       |     | SOIL         | SOIL         | SOIL         | SOIL         | SOIL         |
|              |       |     |              |              |              |              |              |
|              |       |     | 14/5/2015    | 13/5/2015    | 13/5/2015    | 13/5/2015    | 13/5/2015    |
| PARAMETER    | UOM   | LOR | SE139332.025 | SE139332,027 | SE139332,028 | SE139332,029 | SE139332,030 |
| Arsenic, As  | mg/kg | 3   | 17           | <3           | 5            | 7            | 28           |
| Cadmium, Cd  | mg/kg | 0.3 | 0.4          | 0.4          | 0.3          | 0.3          | 0.4          |
| Chromium, Cr | mg/kg | 0.3 | 16           | 11           | 14           | 15           | 15           |
| Copper, Cu   | mg/kg | 0.5 | 10           | 56           | 25           | 17           | 30           |
| Lead, Pb     | mg/kg | 1   | 18           | 13           | 99           | 110          | 10           |
| Nickel, Ni   | mg/kg | 0.5 | 1.1          | 100          | 34           | 11           | 0.9          |
| Zinc, Zn     | mg/kg | 0.5 | 33           | 74           | 100          | 180          | 9.7          |

|              |       |     | Dup1_AS      | Dup2_AS      |
|--------------|-------|-----|--------------|--------------|
|              |       |     | SOIL<br>-    | SOIL<br>-    |
| 212115752    |       |     | 13/5/2015    | 13/5/2015    |
| PARAMETER    | UOM   | LOR | SE139332.033 | SE139332.038 |
| Arsenic, As  | mg/kg | 3   | 4            | <3           |
| Cadmium, Cd  | mg/kg | 0.3 | <0.3         | <0.3         |
| Chromium, Cr | mg/kg | 0.3 | 34           | 6.9          |
| Copper, Cu   | mg/kg | 0.5 | 15           | 43           |
| Lead, Pb     | mg/kg | 1   | 15           | 37           |
| Nickel, Ni   | mg/kg | 0.5 | 37           | 11           |
| Zinc, Zn     | mg/kg | 0.5 | 41           | 47           |

22/05/2015 Page 21 of 37





#### Mercury in Soil [AN312] Tested: 20/5/2015

|           |       |      | TP01_0.05_AS | TP02_0.5_AS  | TP03_0_AS    | TP04_0.05_AS | TP05_0_AS    |
|-----------|-------|------|--------------|--------------|--------------|--------------|--------------|
|           |       |      | SOIL         | SOIL         | SOIL         | SOIL         | SOIL         |
|           |       |      |              |              |              |              | -            |
|           |       |      |              | 14/5/2015    | 14/5/2015    | 13/5/2015    | 14/5/2015    |
| PARAMETER | UOM   | LOR  | SE139332,001 | SE139332,004 | SE139332,005 | SE139332,006 | SE139332,007 |
| Mercury   | mg/kg | 0.01 | 0.02         | 0.59         | 0.05         | 0.02         | 0.20         |

|           |       |      | TP06_0.45_AS | TP07_0.05_AS | TP07_0.5_AS  | TP08_0.05_AS | TP09_0.5_AS  |
|-----------|-------|------|--------------|--------------|--------------|--------------|--------------|
|           |       |      | SOIL         | SOIL         | SOIL         | SOIL         | SOIL         |
|           |       |      |              |              |              |              | -            |
|           |       |      | 14/5/2015    | 14/5/2015    | 14/5/2015    | 14/5/2015    | 13/5/2015    |
| PARAMETER | UOM   | LOR  | SE139332.008 | SE139332.009 | SE139332.010 | SE139332.011 | SE139332.013 |
| Mercury   | mg/kg | 0.01 | <0.01        | 0.05         | <0.01        | <0.01        | 0.02         |

|           |       |      | TP09_1.0_AS  | TP09_2.1_AS  | TP10_0.05_AS | TP10_0.5_AS  | TP11_0_AS    |
|-----------|-------|------|--------------|--------------|--------------|--------------|--------------|
|           |       |      | SOIL         | SOIL         | SOIL         | SOIL         | SOIL         |
|           |       |      |              |              |              |              |              |
|           |       |      |              |              | 13/5/2015    | 13/5/2015    | 14/5/2015    |
| PARAMETER | UOM   | LOR  | SE139332.014 | SE139332.015 | SE139332.016 | SE139332.017 | SE139332.018 |
| Mercury   | mg/kg | 0.01 | 0.03         | <0.01        | <0.01        | <0.01        | 0.02         |

|           |       |      | TP12_0.05_AS | TP12_0.5_AS  | TP13_SP_AS   | TP13_0.05_AS | TP14_0.5_AS  |
|-----------|-------|------|--------------|--------------|--------------|--------------|--------------|
|           |       |      | SOIL         | SOIL         | SOIL         | SOIL         | SOIL         |
|           |       |      |              |              |              |              | -            |
|           |       |      |              |              | 14/5/2015    | 14/5/2015    | 14/5/2015    |
| PARAMETER | UOM   | LOR  | SE139332,019 | SE139332,020 | SE139332,021 | SE139332,022 | SE139332,024 |
| Mercury   | mg/kg | 0.01 | 0.01         | 0.05         | 0.04         | <0.01        | 0.04         |

|           |       |      | TP14_1.0_AS  | TP15_0.5_AS  | TP15_1.0_AS  | TP15_2.0_AS  | TP15_2.9_AS  |
|-----------|-------|------|--------------|--------------|--------------|--------------|--------------|
|           |       |      | SOIL         | SOIL         | SOIL         | SOIL         | SOIL         |
|           |       |      |              |              |              |              |              |
|           |       |      | 14/5/2015    |              | 13/5/2015    | 13/5/2015    | 13/5/2015    |
| PARAMETER | UOM   | LOR  | SE139332.025 | SE139332,027 | SE139332,028 | SE139332,029 | SE139332.030 |
| Mercury   | mg/kg | 0.01 | <0.01        | <0.01        | 0.05         | 0.05         | <0.01        |

|           |       |      | Dup1_AS      | Dup2_AS      |
|-----------|-------|------|--------------|--------------|
|           |       |      | SOIL         | SOIL         |
|           |       |      |              |              |
| PARAMETER | UOM   | LOR  | SE139332.033 | SE139332.038 |
| Mercury   | mg/kg | 0.01 | 0.01         | 0.04         |

22/05/2015 Page 22 of 37



#### Gravimetric Determination of Asbestos in Soil [AN605] Tested: 20/5/2015

|                                        |         |       | TP01_0.05_AS           | TP02_0_AS                       | TP03_0_AS                       | TP04_0.05_AS                    | TP05_0_AS              |
|----------------------------------------|---------|-------|------------------------|---------------------------------|---------------------------------|---------------------------------|------------------------|
|                                        |         |       | SOJL<br>-<br>13/5/2015 | SO <b>I</b> L<br>-<br>14/5/2015 | SO <b>I</b> L<br>-<br>14/5/2015 | SO <b>I</b> L<br>-<br>13/5/2015 | SOIL<br>-<br>14/5/2015 |
| PARAMETER                              | иом     | LOR   | SE139332,001           | SE139332,003                    | SE139332,005                    | SE139332,006                    | SE139332.007           |
| Total Sample Weight*                   | g       | 1     | 388                    | 624                             | 315                             | 763                             | 637                    |
| Asbestos in soil ( >7mm ACM)*          | %w/w    | 0.01  | <0.01                  | <0.01                           | <0.01                           | <0.01                           | <0.01                  |
| Asbestos in soil (>2mm to <7mm AF/FA)* | %w/w    | 0.001 | <0.001                 | <0.001                          | <0.001                          | <0.001                          | <0.001                 |
| Asbestos in soil (<2mm AF/FA)*         | %w/w    | 0.001 | <0.001                 | <0.001                          | <0.001                          | <0.001                          | <0.001                 |
| Asbestos in soil (<7mm AF/FA)*         | %w/w    | 0.001 | <0.001                 | <0.001                          | <0.001                          | <0.001                          | <0.001                 |
| Fibre Type*                            | No unit | =     | =                      | -                               | -                               | -                               | -                      |

|                                        |         |       | TP06_0.45_AS           | TP07_0.05_AS           | TP08_0.05_AS                    | TP09_0_AS                       | TP09_0.5_AS            |
|----------------------------------------|---------|-------|------------------------|------------------------|---------------------------------|---------------------------------|------------------------|
|                                        |         |       | SOIL<br>-<br>14/5/2015 | SOIL<br>-<br>14/5/2015 | SO <b>I</b> L<br>-<br>14/5/2015 | SO <b>I</b> L<br>-<br>13/5/2015 | SOIL<br>-<br>13/5/2015 |
| PARAMETER                              | UOM     | LOR   | SE139332.008           | SE139332.009           | SE139332.011                    | SE139332.012                    | SE139332.013           |
| Total Sample Weight*                   | g       | 1     | 749                    | 593                    | 178                             | 555                             | 565                    |
| Asbestos in soil ( >7mm ACM)*          | %w/w    | 0.01  | <0.01                  | <0.01                  | <0.01                           | <0.01                           | <0.01                  |
| Asbestos in soil (>2mm to <7mm AF/FA)* | %w/w    | 0.001 | <0.001                 | <0.001                 | <0.001                          | <0.001                          | <0.001                 |
| Asbestos in soil (<2mm AF/FA)*         | %w/w    | 0.001 | <0.001                 | <0.001                 | <0.001                          | <0.001                          | <0.001                 |
| Asbestos in soil (<7mm AF/FA)*         | %w/w    | 0.001 | <0.001                 | <0.001                 | <0.001                          | <0.001                          | <0.001                 |
| Fibre Type*                            | No unit | -     | -                      | -                      | -                               | -                               | -                      |

|                                        |         |       | TP10_0.05_AS           | TP12_0.05_AS           | TP13_0.05_AS                    | TP14_0.05_AS                    | TP14_0.5_AS            |
|----------------------------------------|---------|-------|------------------------|------------------------|---------------------------------|---------------------------------|------------------------|
|                                        |         |       | SOIL<br>-<br>13/5/2015 | SOIL<br>-<br>13/5/2015 | SO <b>I</b> L<br>-<br>14/5/2015 | SO <b>I</b> L<br>-<br>14/5/2015 | SOIL<br>-<br>14/5/2015 |
| PARAMETER                              | UOM     | LOR   | SE139332.016           | SE139332,019           | SE139332.022                    | SE139332.023                    | SE139332.024           |
| Total Sample Weight*                   | g       | 1     | 648                    | 610                    | 659                             | 815                             | 446                    |
| Asbestos in soil ( >7mm ACM)*          | %w/w    | 0.01  | <0.01                  | <0.01                  | <0.01                           | <0.01                           | <0.01                  |
| Asbestos in soil (>2mm to <7mm AF/FA)* | %w/w    | 0.001 | <0.001                 | <0.001                 | <0.001                          | <0.001                          | <0.001                 |
| Asbestos in soil (<2mm AF/FA)*         | %w/w    | 0.001 | <0.001                 | <0.001                 | <0.001                          | <0.001                          | <0.001                 |
| Asbestos in soil (<7mm AF/FA)*         | %w/w    | 0.001 | <0.001                 | <0.001                 | <0.001                          | <0.001                          | <0.001                 |
| Fibre Type*                            | No unit | -     | -                      | -                      | -                               | -                               | -                      |

|                                        |         |       | TP15_0_AS                              | TP15_0.5_AS                            |
|----------------------------------------|---------|-------|----------------------------------------|----------------------------------------|
| PARAMETER                              | UOM     | LOR   | SOIL<br>-<br>13/5/2015<br>SE139332.026 | SOIL<br>-<br>13/5/2015<br>SE139332,027 |
| Total Sample Weight*                   | g       | 1     | 780                                    | 804                                    |
| Asbestos in soil ( >7mm ACM)*          | %w/w    | 0.01  | <0.01                                  | <0.01                                  |
| Asbestos in soil (>2mm to <7mm AF/FA)* | %w/w    | 0.001 | <0.001                                 | <0.001                                 |
| Asbestos in soil (<2mm AF/FA)*         | %w/w    | 0.001 | <0.001                                 | <0.001                                 |
| Asbestos in soil (<7mm AF/FA)*         | %w/w    | 0.001 | <0.001                                 | <0.001                                 |
| Fibre Type*                            | No unit | -     | -                                      | -                                      |

22/05/2015 Page 23 of 37





#### Moisture Content [AN002] Tested: 21/5/2015

|            |     |     | TP01_0.05_AS | TP01_0.5_AS  | TP02_0.5_AS  | TP03_0_AS    | TP04_0.05_AS |
|------------|-----|-----|--------------|--------------|--------------|--------------|--------------|
|            |     |     | SOIL         | SOIL         | SOIL         | SOIL         | SOIL         |
|            |     |     |              |              |              |              | -            |
|            |     |     |              | 13/5/2015    | 14/5/2015    | 14/5/2015    | 13/5/2015    |
| PARAMETER  | UOM | LOR | SE139332,001 | SE139332,002 | SE139332,004 | SE139332,005 | SE139332,006 |
| % Moisture | %   | 0.5 | 29           | 21           | 19           | 20           | 8.3          |

|            |     |     | TP05_0_AS    | TP06_0.45_AS | TP07_0.05_AS | TP07_0.5_AS  | TP08_0.05_AS |
|------------|-----|-----|--------------|--------------|--------------|--------------|--------------|
|            |     |     | SOIL         | SOIL         | SOIL         | SOIL         | SOIL         |
|            |     |     |              |              |              |              |              |
|            |     |     | 14/5/2015    | 14/5/2015    | 14/5/2015    | 14/5/2015    | 14/5/2015    |
| PARAMETER  | UOM | LOR | SE139332.007 | SE139332.008 | SE139332.009 | SE139332.010 | SE139332.011 |
| % Moisture | %   | 0.5 | 9.6          | 8.5          | 8.4          | 24           | 10           |

|            |     |     | TP09_0.5_AS  | TP09_1.0_AS  | TP09_2.1_AS  | TP10_0.05_AS | TP10_0.5_AS  |
|------------|-----|-----|--------------|--------------|--------------|--------------|--------------|
|            |     |     | SOIL         | SOIL         | SOIL         | SOIL         | SOIL         |
|            |     |     |              |              |              |              | -            |
|            |     |     |              |              | 13/5/2015    | 13/5/2015    | 13/5/2015    |
| PARAMETER  | UOM | LOR | SE139332.013 | SE139332.014 | SE139332.015 | SE139332.016 | SE139332.017 |
| % Moisture | %   | 0.5 | 7.8          | 14           | 16           | 9.9          | 17           |

|            |     |     | TP11_0_AS    | TP12_0.05_AS | TP12_0.5_AS  | TP13_SP_AS   | TP13_0.05_AS |
|------------|-----|-----|--------------|--------------|--------------|--------------|--------------|
|            |     |     | SOIL         | SOIL         | SOIL         | SOIL         | SOIL         |
|            |     |     |              |              |              |              | -            |
|            |     |     | 14/5/2015    |              |              | 14/5/2015    | 14/5/2015    |
| PARAMETER  | UOM | LOR | SE139332,018 | SE139332,019 | SE139332,020 | SE139332,021 | SE139332,022 |
| % Moisture | %   | 0.5 | 11           | 7.6          | 17           | 9.8          | 11           |

|            |     |     | TP14_0.5_AS  | TP14_1.0_AS  | TP15_0.5_AS  | TP15_1.0_AS  | TP15_2.0_AS  |
|------------|-----|-----|--------------|--------------|--------------|--------------|--------------|
|            |     |     | SOIL         | SOIL         | SOIL         | SOIL         | SOIL         |
|            |     |     |              |              |              |              |              |
|            |     |     | 14/5/2015    | 14/5/2015    | 13/5/2015    | 13/5/2015    | 13/5/2015    |
| PARAMETER  | UOM | LOR | SE139332.024 | SE139332.025 | SE139332.027 | SE139332.028 | SE139332.029 |
| % Moisture | %   | 0.5 | 13           | 17           | 6.3          | 7.0          | 19           |

|            |     |     | TP15_2.9_AS  | Dup1_AS      | TB_AS        | Dup2_AS        |
|------------|-----|-----|--------------|--------------|--------------|----------------|
|            |     |     | SOIL         | SOIL         | SOIL         | SOIL           |
|            |     |     |              |              |              | -<br>13/5/2015 |
| PARAMETER  | UOM | LOR | SE139332.030 | SE139332.033 | SE139332.036 | SE139332.038   |
| % Moisture | %   | 0.5 | 17           | 6.8          | <0.5         | 8.3            |

22/05/2015 Page 24 of 37



SE139332 R0

#### Fibre ID in bulk materials [AN602] Tested: 21/5/2015

|                   |         |     | TP14_FC_FRAG<br>Sieve | TP11_0_AS_FRAG |
|-------------------|---------|-----|-----------------------|----------------|
|                   |         |     | MATERIAL              | MATERIAL       |
|                   |         |     |                       | <u>-</u>       |
|                   |         |     |                       | 13/5/2015      |
| PARAMETER         | UOM     | LOR | SE139332.034          | SE139332.037   |
| Asbestos Detected | No unit | -   | Yes                   | Yes            |

22/05/2015 Page 25 of 37



SE139332 R0

#### Weight of Sample [AN002] Tested: -

|                   |     |      | TP14_FC_FRAG<br>Sieve | TP11_0_AS_FRAG |
|-------------------|-----|------|-----------------------|----------------|
|                   |     |      | MATERIAL              | MATERIAL       |
|                   |     |      |                       | -              |
|                   |     |      |                       | 13/5/2015      |
| PARAMETER         | UOM | LOR  | SE139332.034          | SE139332.037   |
| Weight of Sample* | g   | 0.01 | 10.70                 | 4.40           |

22/05/2015 Page 26 of 37



## SGS

## **ANALYTICAL RESULTS**

#### VOCs in Water [AN433/AN434] Tested: 19/5/2015

|               |      |     | FB130515                | FB140515                |
|---------------|------|-----|-------------------------|-------------------------|
|               |      |     | WATER<br>-<br>13/5/2015 | WATER<br>-<br>14/5/2015 |
| PARAMETER     | UOM  | LOR | SE139332.031            | SE139332,032            |
| Benzene       | μg/L | 0.5 | <0.5                    | <0.5                    |
| Toluene       | μg/L | 0.5 | <0.5                    | <0.5                    |
| Ethylbenzene  | μg/L | 0.5 | <0.5                    | <0.5                    |
| m/p-xylene    | μg/L | 1   | <1                      | <1                      |
| o-xylene      | μg/L | 0.5 | <0.5                    | <0.5                    |
| Total Xylenes | μg/L | 1.5 | <1.5                    | <1.5                    |
| Total BTEX    | μg/L | 3   | <3                      | <3                      |
| Naphthalene   | μg/L | 0.5 | <0.5                    | <0.5                    |

22/05/2015 Page 27 of 37



SE139332 R0

#### Volatile Petroleum Hydrocarbons in Water [AN433/AN434/AN410] Tested: 19/5/2015

|                            |      |     | FB130515                | FB140515                |
|----------------------------|------|-----|-------------------------|-------------------------|
|                            |      |     | WATER<br>-<br>13/5/2015 | WATER<br>-<br>14/5/2015 |
| PARAMETER                  | UOM  | LOR | SE139332,031            | SE139332,032            |
| TRH C6-C9                  | μg/L | 40  | <40                     | <40                     |
| Benzene (F0)               | μg/L | 0.5 | <0.5                    | <0.5                    |
| TRH C6-C10                 | μg/L | 50  | <50                     | <50                     |
| TRH C6-C10 minus BTEX (F1) | μg/L | 50  | <50                     | <50                     |

22/05/2015 Page 28 of 37





#### TRH (Total Recoverable Hydrocarbons) in Water [AN403] Tested: 20/5/2015

|                   |      |     | FB130515                       | FB140515                       |
|-------------------|------|-----|--------------------------------|--------------------------------|
| PARAMETER         | UOM  | LOR | WATER - 13/5/2015 SE139332,031 | WATER - 14/5/2015 SE139332,032 |
| TRH C10-C14       | μg/L | 50  | <50                            | <50                            |
| TRH C15-C28       | μg/L | 200 | <200                           | <200                           |
| TRH C29-C36       | μg/L | 200 | <200                           | <200                           |
| TRH C37-C40       | μg/L | 200 | <200                           | <200                           |
| TRH >C10-C16 (F2) | μg/L | 60  | <60                            | <60                            |
| TRH >C16-C34 (F3) | μg/L | 500 | <500                           | <500                           |
| TRH >C34-C40 (F4) | μg/L | 500 | <500                           | <500                           |
| TRH C10-C36       | μg/L | 450 | <450                           | <450                           |
| TRH C10-C40       | μg/L | 650 | <650                           | <650                           |

22/05/2015 Page 29 of 37



#### PAH (Polynuclear Aromatic Hydrocarbons) in Water [AN420] Tested: 20/5/2015

|                        |      |     | FB130515     | FB140515              |
|------------------------|------|-----|--------------|-----------------------|
|                        |      |     | FB 1303 13   | FD 140515             |
|                        |      |     | WATER        | WATER                 |
|                        |      |     |              |                       |
|                        |      |     |              | 14/5/2015             |
| PARAMETER              | UOM  | LOR | SE139332,031 | SE139332 <b>.</b> 032 |
| Naphthalene            | μg/L | 0.1 | <0.1         | <0.1                  |
| 2-methylnaphthalene    | μg/L | 0.1 | <0.1         | <0.1                  |
| 1-methylnaphthalene    | μg/L | 0.1 | <0.1         | <0.1                  |
| Acenaphthylene         | μg/L | 0.1 | <0.1         | <0.1                  |
| Acenaphthene           | μg/L | 0.1 | <0.1         | <0.1                  |
| Fluorene               | µg/L | 0.1 | <0.1         | <0.1                  |
| Phenanthrene           | μg/L | 0.1 | <0.1         | <0.1                  |
| Anthracene             | μg/L | 0.1 | <0.1         | <0.1                  |
| Fluoranthene           | μg/L | 0.1 | <0.1         | <0.1                  |
| Pyrene                 | μg/L | 0.1 | <0.1         | <0.1                  |
| Benzo(a)anthracene     | μg/L | 0.1 | <0.1         | <0.1                  |
| Chrysene               | μg/L | 0.1 | <0.1         | <0.1                  |
| Benzo(b&j)fluoranthene | μg/L | 0.1 | <0.1         | <0.1                  |
| Benzo(k)fluoranthene   | µg/L | 0.1 | <0.1         | <0.1                  |
| Benzo(a)pyrene         | μg/L | 0.1 | <0.1         | <0.1                  |
| Indeno(1,2,3-cd)pyrene | μg/L | 0.1 | <0.1         | <0.1                  |
| Dibenzo(a&h)anthracene | μg/L | 0.1 | <0.1         | <0.1                  |
| Benzo(ghi)perylene     | μg/L | 0.1 | <0.1         | <0.1                  |
| Total PAH (18)         | μg/L | 1   | <1           | <1                    |

22/05/2015 Page 30 of 37



#### OC Pesticides in Water [AN400/AN420] Tested: 20/5/2015

|                         |              |     | FB130515                  | FB140515                  |
|-------------------------|--------------|-----|---------------------------|---------------------------|
|                         |              |     | WATER                     | WATER                     |
|                         |              |     |                           |                           |
| PARAMETER               | UOM          | LOR | 13/5/2015<br>SE139332,031 | 14/5/2015<br>SE139332,032 |
| Alpha BHC               | μg/L         | 0.1 | <0.1                      | <0.1                      |
| Hexachlorobenzene (HCB) | μg/L         | 0.1 | <0.1                      | <0.1                      |
| Beta BHC                | μg/L         | 0.1 | <0.1                      | <0.1                      |
| Lindane (gamma BHC)     | μg/L         | 0.1 | <0.1                      | <0.1                      |
| Delta BHC               | μg/L         | 0.1 | <0.1                      | <0.1                      |
| Heptachlor              | μg/L         | 0.1 | <0.1                      | <0.1                      |
| Aldrin                  | μg/L         | 0.1 | <0.1                      | <0.1                      |
| Heptachlor epoxide      | μg/L         | 0.1 | <0.1                      | <0.1                      |
| Gamma Chlordane         | μg/L         | 0.1 | <0.1                      | <0.1                      |
| Alpha Chlordane         | μg/L         | 0.1 | <0.1                      | <0.1                      |
| Alpha Endosulfan        |              | 0.1 | <0.1                      | <0.1                      |
| o,p'-DDE                | μg/L<br>μg/L | 0.1 | <0.1                      | <0.1                      |
| <u>'</u>                |              | 0.1 | <0.1                      | <0.1                      |
| p,p'-DDE Dieldrin       | μg/L         | 0.1 | <0.1                      | <0.1                      |
|                         | µg/L         | 0.1 | <0.1                      | <0.1                      |
| Endrin                  | μg/L         |     |                           |                           |
| Beta Endosulfan         | μg/L         | 0.1 | <0.1                      | <0.1                      |
| o,p'-DDD                | μg/L         | 0.1 | <0.1                      | <0.1                      |
| p,p'-DDD                | μg/L         | 0.1 | <0.1                      | <0.1                      |
| Endosulfan sulphate     | μg/L         | 0.1 | <0.1                      | <0.1                      |
| o,p'-DDT                | μg/L         | 0.1 | <0.1                      | <0.1                      |
| p,p'-DDT                | μg/L         | 0.1 | <0.1                      | <0.1                      |
| Endrin ketone           | μg/L         | 0.1 | <0.1                      | <0.1                      |
| Methoxychlor            | μg/L         | 0.1 | <0.1                      | <0.1                      |
| trans-Nonachlor         | μg/L         | 0.1 | <0.1                      | <0.1                      |
| Endrin aldehyde         | μg/L         | 0.1 | <0.1                      | <0.1                      |
| Isodrin                 | μg/L         | 0.1 | <0.1                      | <0.1                      |
| Mirex                   | μg/L         | 0.1 | <0.1                      | <0.1                      |

22/05/2015 Page 31 of 37





#### OP Pesticides in Water [AN400/AN420] Tested: 20/5/2015

|                                   |      |     | FB130515     | FB140515     |
|-----------------------------------|------|-----|--------------|--------------|
|                                   |      |     | WATER        | WATER        |
|                                   |      |     |              |              |
|                                   |      |     | 13/5/2015    | 14/5/2015    |
| PARAMETER                         | иом  | LOR | SE139332.031 | SE139332.032 |
| Dichlorvos                        | μg/L | 0.5 | <0.5         | <0.5         |
| Dimethoate                        | μg/L | 0.5 | <0.5         | <0.5         |
| Diazinon (Dimpylate)              | μg/L | 0.5 | <0.5         | <0.5         |
| Fenitrothion                      | μg/L | 0.2 | <0.2         | <0.2         |
| Malathion                         | μg/L | 0.2 | <0.2         | <0.2         |
| Chlorpyrifos (Chlorpyrifos Ethyl) | μg/L | 0.2 | <0.2         | <0.2         |
| Parathion-ethyl (Parathion)       | μg/L | 0.2 | <0.2         | <0.2         |
| Bromophos Ethyl                   | μg/L | 0.2 | <0.2         | <0.2         |
| Methidathion                      | μg/L | 0.5 | <0.5         | <0.5         |
| Ethion                            | μg/L | 0.2 | <0.2         | <0.2         |
| Azinphos-methyl                   | μg/L | 0.2 | <0.2         | <0.2         |

22/05/2015 Page 32 of 37



# SGS

## **ANALYTICAL RESULTS**

#### PCBs in Water [AN400/AN420] Tested: 20/5/2015

|                  |      |     | FB130515                       | FB140515                       |
|------------------|------|-----|--------------------------------|--------------------------------|
| PARAMETER        | UOM  | LOR | WATER - 13/5/2015 SE139332.031 | WATER - 14/5/2015 SE139332,032 |
| Arochlor 1016    | μg/L | 1   | <1                             | <1                             |
| Arochlor 1221    | μg/L | 1   | <1                             | <1                             |
| Arochlor 1232    | μg/L | 1   | <1                             | <1                             |
| Arochlor 1242    | μg/L | 1   | <1                             | <1                             |
| Arochlor 1248    | μg/L | 1   | <1                             | <1                             |
| Arochlor 1254    | μg/L | 1   | <1                             | <1                             |
| Arochlor 1260    | μg/L | 1   | <1                             | <1                             |
| Arochlor 1262    | μg/L | 1   | <1                             | <1                             |
| Arochlor 1268    | μg/L | 1   | <1                             | <1                             |
| Total Arochlors* | μg/L | 5   | <5                             | <5                             |

22/05/2015 Page 33 of 37





#### Trace Metals (Dissolved) in Water by ICPMS [AN318] Tested: 20/5/2015

|              |      |      | FB130515                | FB140515                |
|--------------|------|------|-------------------------|-------------------------|
|              |      | 1.00 | WATER<br>-<br>13/5/2015 | WATER<br>-<br>14/5/2015 |
| PARAMETER    | UOM  | LOR  | SE139332,031            | SE139332,032            |
| Arsenic, As  | μg/L | 1    | <1                      | <1                      |
| Cadmium, Cd  | μg/L | 0.1  | <0.1                    | <0.1                    |
| Chromium, Cr | μg/L | 1    | <1                      | <1                      |
| Copper, Cu   | μg/L | 1    | <1                      | <1                      |
| Lead, Pb     | μg/L | 1    | <1                      | <1                      |
| Nickel, Ni   | μg/L | 1    | <1                      | <1                      |
| Zinc, Zn     | μg/L | 5    | <5                      | <5                      |

22/05/2015 Page 34 of 37



SE139332 R0

#### Mercury (dissolved) in Water [AN311/AN312] Tested: 21/5/2015

|           |      |        | FB130515     | FB140515     |
|-----------|------|--------|--------------|--------------|
|           |      |        | WATER        | WATER        |
|           |      |        |              | -            |
|           |      |        |              | 14/5/2015    |
| PARAMETER | UOM  | LOR    | SE139332,031 | SE139332,032 |
| Mercury   | mg/L | 0.0001 | <0.0001      | <0.0001      |

22/05/2015 Page 35 of 37



#### **METHOD SUMMARY**



METHOD -

METHODOLOGY SUMMARY

AN002

Weight of as received sample determined on a 2 decimal place balance.

AN020

Unpreserved water sample is filtered through a 0.45 µm membrane filter and acidified with nitric acid similar to APHA3030B.

AN040

A portion of sample is digested with Nitric acid to decompose organic matter and Hydrochloric acid to complete the digestion of metals and then filtered for analysis by ASS or ICP as per USEPA Method 200.8.

AN040/AN320

A portion of sample is digested with nitric acid to decompose organic matter and hydrochloric acid to complete the digestion of metals. The digest is then analysed by ICP OES with metals results reported on the dried sample basis. Based on USEPA method 200.8 and 6010C.

AN083

Separatory funnels are used for aqueous samples and extracted by transferring an appropriate volume (mass) of liquid into a separatory funnel and adding 3 serial aliquots of dichloromethane. Samples receive a single extraction at pH 7 to recover base / neutral analytes and two extractions at pH < 2 to recover acidic analytes. QC samples are prepared by spiking organic free water with target analytes and extracting as per samples.

**AN088** 

Orbital rolling for Organic pollutants are extracted from soil/sediment by transferring an appropriate mass of sample to a clear soil jar and extracting with 1:1 Dichloromethane/Acetone. Orbital Rolling method is intended for the extraction of semi-volatile organic compounds from soil/sediment samples, and is based somewhat on USEPA method 3570 (Micro Organic extraction and sample preparation). Method 3700.

AN101

pH in Soil Sludge Sediment and Water: pH is measured electrometrically using a combination electrode and is calibrated against 3 buffers purchased commercially. For soils, sediments and sludges, an extract with water (or 0.01M CaCl2) is made at a ratio of 1:5 and the pH determined and reported on the extract. Reference APHA 4500-H+.

AN122

Exchangeable Cations, CEC and ESP: Soil sample is extracted in 1M Ammonium Acetate at pH=7 (or 1M Ammonium Chloride at pH=7) with cations (Na, K, Ca & Mg) then determined by ICP OES/ICP MS and reported as Exchangeable Cations. For saline soils, these results can be corrected for water soluble cations and reported as Exchangeable cations in meq/100g or soil can be pretreated (aqueous ethanol/aqueous glycerol) prior to extraction. Cation Exchange Capacity (CEC) is the sum of the exchangeable cations in meq/100g.

AN311/AN312

Mercury by Cold Vapour AAS in Waters: Mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500.

**AN312** 

Mercury by Cold Vapour AAS in Soils: After digestion with nitric acid, hydrogen peroxide and hydrochloric acid, mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500

AN318

Determination of elements at trace level in waters by ICP-MS technique, in accordance with USEPA 6020A.

AN400

OC and OP Pesticides by GC-ECD: The determination of organochlorine (OC) and organophosphorus (OP) pesticides and polychlorinated biphenyls (PCBs) in soils, sludges and groundwater. (Based on USEPA methods 3510, 3550, 8140 and 8080.)

AN403

Total Recoverable Hydrocarbons: Determination of Hydrocarbons by gas chromatography after a solvent extraction. Detection is by flame ionisation detector (FID) that produces an electronic signal in proportion to the combustible matter passing through it. Total Recoverable Hydrocarbons (TRH) are routinely reported as four alkane groupings based on the carbon chain length of the compounds: C6-C9, C10-C14, C15-C28 and C29-C36 and in recognition of the NEPM 1999 (2013), >C10-C16 (F2), >C16-C34 (F3) and >C34-C40 (F4). F2 is reported directly and also corrected by subtracting Naphthalene (from VOC method AN433) where available.

AN420

(SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols (etc) in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).

AN433/AN434

VOCs and C6-C9 Hydrocarbons by GC-MS P&T: VOC's are volatile organic compounds. The sample is presented to a gas chromatograph via a purge and trap (P&T) concentrator and autosampler and is detected with a Mass Spectrometer (MSD). Solid samples are initially extracted with methanol whilst liquid samples are processed directly. References: USEPA 5030B, 8020A, 8260.

AN433/AN434/AN410

VOCs and C6-C9/C6-C10 Hydrocarbons by GC-MS P&T: VOC's are volatile organic compounds. The sample is presented to a gas chromatograph via a purge and trap (P&T) concentrator and autosampler and is detected with a Mass Spectrometer (MSD). Solid samples are initially extracted with methanol whilst liquid samples are processed directly. References: USEPA 5030B, 8020A, 8260.

AN602

Qualitative identification of chrysotile, amosite and crocidolite in bulk samples by polarised light microscopy (PLM) in conjunction with dispersion staining (DS). AS4964 provides the basis for this document. Unequivocal identification of the asbestos minerals present is made by obtaining sufficient diagnostic 'clues', which provide a reasonable degree of certainty, dispersion staining is a mandatory 'clue' for positive identification. If sufficient 'clues' are absent, then positive identification of asbestos is not possible. This procedure requires removal of suspect fibres/bundles from the sample which cannot be returned.

22/05/2015 Page 36 of 37



#### **METHOD SUMMARY**

SE139332 R0

AN605

This technique gravimetrically deteremines the mass of Asbestos Containing Material retained on a 7mm Sieve and assumes that 15% of this ACM is asbestos. This calculated asbestos weight is then calculated as a percentage of the total sample weight.

#### FOOTNOTES -

\* Analysis not covered by the scope of accreditation.

\*\* Indicative data, theoretical holding time exceeded.

Performed by outside laboratory.

Not analysed.NVL Not validated.

IS Insufficient sample for analysis.

LNR Sample listed, but not received.

UOM Unit of Measure.

LOR Limit of Reporting.

↑↓ Raised/lowered Limit of

Reporting.

Samples analysed as received.
Solid samples expressed on a dry weight basis.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/en/Terms-and-Conditions/General-Conditions-of-Services-English.aspx. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full.

22/05/2015 Page 37 of 37



#### **ANALYTICAL REPORT**



CLIENT DETAILS -LABORATORY DETAILS -

Imogen Powell **Huong Crawford** Contact Manager

Parsons Brinckerhoff Australia Ptv Ltd SGS Alexandria Environmental Client Laboratory

Level 27, 680 George St Unit 16, 33 Maddox St Address NSW 2000 Alexandria NSW 2015

02 9272 5100 Telephone Telephone +61 2 8594 0400 02 9272 5101 Facsimile +61 2 8594 0499

Facsimile Email ipowell@pb.com.au Email au.environmental.sydney@sgs.com

2201679B - Syd Water ESA'S-Ashfield SGS Reference SE139332 R0 Project 0000110824 76563--76567 Report Number Order Number 22 May 2015 Date Reported

Samples 2 Date Received 15 May 2015

COMMENTS

Address

Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562(4354).

Clay Content - Subcontracted to SGS Cairns, 2/58 Comport St, Portsmith QLD 4870, NATA Accreditation Number: 2562, Site Number: 3146.

No respirable fibres detected in all samples using trace analysis technique as per AS 4964-2004.

Asbestos analysed by Approved Identifiers Yusuf Kuthpudin and Ravee Sivasubramaniam .

SIGNATORIES -

Andy Sutton

Senior Organic Chemist

Kinly

Ady Sitte

Dong Liang

Metals/Inorganics Team Leader

Kamrul Ahsan Senior Chemist

S. Rovernolm.

Ly Kim Ha

Organic Section Head

Ravee Sivasubramaniam

Asbestos Analyst

SGS Australia Pty Ltd ABN 44 000 964 278

**Environmental Services** 

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australia Australia t +61 2 8594 0400

f +61 2 8594 0499

www.au.sgs.com





#### **ANALYTICAL REPORT**

RESULTS -Method AN602 Fibre ID in bulk materials Laboratory Sample Matrix Date Sampled Fibre Identification Reference Reference Description TP14\_FC\_FRAG 55x40x3mm SE139332.034 Other 13 May 2015 Chrysotile Asbestos Detected Cement sheet Sieve fragments SE139332.037 Other 13 May 2015 Amosite, Chrysotile & Crocidolite Asbestos Detected TP11\_0\_AS\_FRA 40x40x3mm G Cement sheet fragments

22/05/2015 Page 2 of 4





#### **METHOD SUMMARY**

| METHOD | METHODOLOGY SUMMARY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| AN002  | Weight of as received sample determined on a 2 decimal place balance.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| AN602  | Qualitative identification of chrysotile, amosite and crocidolite in bulk samples by polarised light microscopy (PLM) in conjunction with dispersion staining (DS). AS4964 provides the basis for this document. Unequivocal identification of the asbestos minerals present is made by obtaining sufficient diagnostic `clues`, which provide a reasonable degree of certainty, dispersion staining is a mandatory `clue` for positive identification. If sufficient `clues` are absent, then positive identification of asbestos is not possible. This procedure requires removal of suspect fibres/bundles from the sample which cannot be returned. |
| AN602  | Fibres/material that cannot be unequivocably identified as one of the three asbestos forms, will be reported as unknown mineral fibres (umf).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| AN605  | This technique gravimetrically deteremines the mass of Asbestos Containing Material retained on a 7mm Sieve and assumes that 15% of this ACM is asbestos. This calculated asbestos weight is then calculated as a percentage of the total sample weight.                                                                                                                                                                                                                                                                                                                                                                                                |
| AN605  | This technique also gravimetrically deteremines the mass of Fibrous Asbestos (FA) and Asbestos Fines (AF) Containing Material retained on and passing a 2mm sieve post 7mm Sieving. Assumes that FA and AF are 100% asbestos containing. This calculated asbestos weight is then calculated as a percentage of the screened fraction sample weights. This does not include free fibres which are only observed by standard trace analysis as per AN602.                                                                                                                                                                                                 |
| AN605  | AMO = Amosite CRY = Chrysotile CRO = Crocidolite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| AN605  | In sofar as is trechnically feasible, this report is consistent with the analytical reporting recommendations in the Western Australian Department of Health Guidelines for the Assessment Remediation and Management of Asbestos - Contaminated Sites in Western Australia - May 2009.                                                                                                                                                                                                                                                                                                                                                                 |

22/05/2015 Page 3 of 4



FOOTNOTES

Amosite - Brown Asbestos NA - Not Analysed
Chrysotile - White Asbestos LNR - Listed, Not Required
Crocidolite - Blue Asbestos \* - Not Accredited

Crocidolite - Blue Asbestos \* - Not Accredited

Amphiboles - Amosite and/or Crocidolite \*\* - Indicative data, theoretical holding time exceeded.

of Health Guidelines for the Assessment and Remediation and Management of Asbestos Contaminated sites in Western Australia - May 2009.

(In reference to soil samples only) This report does not comply with the analytical reporting recommendations in the Western Australian Department

Sampled by the client.

Where reported: 'Asbestos Detected': Asbestos detected by polarized light microscopy, including dispersion staining.

Where reported: 'No Asbestos Found': No Asbestos Found by polarized light microscopy, including dispersion staining.

Where reported: 'UMF Detected': Mineral fibres of unknown type detected by polarized light microscopy, including dispersion staining. Confirmation by another independent analytical technique may be necessary.

Even after disintegration it can be very difficult, or impossible, to detect the presence of asbestos in some asbestos -containing bulk materials using polarised light microscopy. This is due to the low grade or small length or diameter of asbestos fibres present in the material, or to the fact that very fine fibres have been distributed intimately throughout the materials.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at <a href="http://www.sgs.com/en/Terms-and-Conditions/General-Conditions-of-Services-English.aspx">http://www.sgs.com/en/Terms-and-Conditions/General-Conditions-of-Services-English.aspx</a>. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This test report shall not be reproduced, except in full.

22/05/2015 Page 4 of 4



#### **ANALYTICAL REPORT**



LABORATORY DETAILS CLIENT DETAILS -

Contact Imogen Powell Jon Dicker Manager

Parsons Brinckerhoff Australia Pty Ltd SGS Cairns Environmental Client Laboratory Address Level 27, 680 George St Address Unit 2, 58 Comport St NSW 2000

Portsmith QLD 4870

19 May 2015

02 8594 0400 +61 07 4035 5111 Telephone Telephone 02 8594 0499 +61 07 4035 5122 Facsimile Facsimile

au.environmental.sydney@sgs.com Email AU.Environmental.Cairns@sgs.com Email

Date Received

2201679B - Syd Water ESA'S Ashfield CE115353 R0 SGS Reference Project SE139332 0000025463 Order Number Report Number 22 May 2015 Samples Date Reported

Date Started COMMENTS .

Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562(3146)

20 May 2015

SIGNATORIES

Anthony Nilsson **Operations Manager** 



# **ANALYTICAL REPORT**

Sample Number Sample Matrix Sample Date Sample Name CE115353.001 Soil 14 May 2015 TP01\_0.5\_AS

Parameter Units LOR

Moisture Content Method: AN002 Tested: 19/5/2015

#### Particle sizing of soils by sieving Method: AN005 Tested: -

| Passing 75µm  | %w/w | 1 | 89 |
|---------------|------|---|----|
| Retained 75µm | %w/w | 1 | 11 |

# Particle sizing of soils <75µm by hydrometer Method: AN005 Tested: -

| Sedimentation Diameter 1           | mm   | 0.0001 | 0.0519 |
|------------------------------------|------|--------|--------|
| Passing Sedimentation Diameter 1   | %w/w | 1      | 75     |
| Retained Sedimentation Diameter 1  | %w/w | 1      | 14     |
| Sedimentation Diameter 2           | mm   | 0.0001 | 0.0372 |
| Passing Sedimentation Diameter 2   | %w/w | 1      | 70     |
| Retained Sedimentation Diameter 2  | %w/w | 1      | 5      |
| Sedimentation Diameter 3           | mm   | 0.0001 | 0.0266 |
| Passing Sedimentation Diameter 3   | %w/w | 1      | 64     |
| Retained Sedimentation Diameter 3  | %w/w | 1      | 5      |
| Sedimentation Diameter 4           | mm   | 0.0001 | 0.0191 |
| Passing Sedimentation Diameter 4   | %w/w | 1      | 59     |
| Retained Sedimentation Diameter 4  | %w/w | 1      | 5      |
| Sedimentation Diameter 5           | mm   | 0.0001 | 0.0140 |
| Passing Sedimentation Diameter 5   | %w/w | 1      | 56     |
| Retained Sedimentation Diameter 5  | %w/w | 1      | 3      |
| Sedimentation Diameter 6           | mm   | 0.0001 | 0.0100 |
| Passing Sedimentation Diameter 6   | %w/w | 1      | 54     |
| Retained Sedimentation Diameter 6  | %w/w | 1      | 3      |
| Sedimentation Diameter 7           | mm   | 0.0001 | 0.0071 |
| Passing Sedimentation Diameter 7   | %w/w | 1      | 51     |
| Retained Sedimentation Diameter 7  | %w/w | 1      | 3      |
| Sedimentation Diameter 8           | mm   | 0.0001 | 0.0051 |
| Passing Sedimentation Diameter 8   | %w/w | 1      | 48     |
| Retained Sedimentation Diameter 8  | %w/w | 1      | 3      |
| Sedimentation Diameter 9           | mm   | 0.0001 | 0.0036 |
| Passing Sedimentation Diameter 9   | %w/w | 1      | 46     |
| Retained Sedimentation Diameter 9  | %w/w | 1      | 3      |
| Sedimentation Diameter 10          | mm   | 0.0001 | 0.0015 |
| Passing Sedimentation Diameter 10  | %w/w | 1      | 43     |
| Retained Sedimentation Diameter 10 | %w/w | 1      | 3      |
| Sedimentation Diameter 11          | mm   | 0.0001 | 0.0011 |
| Passing Sedimentation Diameter 11  | %w/w | 1      | 40     |
| Retained Sedimentation Diameter 11 | %w/w | 1      | 3      |

Page 2 of 4 22-May-2015





# **QC SUMMARY**

MB blank results are compared to the Limit of Reporting

LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample.

DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula: the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

No QC samples were reported for this job.

Page 3 of 4 22-May-2015

CE115353 R0



#### **METHOD SUMMARY**

METHOD

METHODOLOGY SUMMARY

AN002

The test is carried out by drying (at either 40°C or 105°C) a known mass of sample in a weighed evaporating basin. After fully dry the sample is re-weighed. Samples such as sludge and sediment having high percentages of moisture will take some time in a drying oven for complete removal of water.

AN005

The particle size distribution of a soil is determined by wet sieving, using a maximum of 900  $\,$  mL of deionised water to sieve all fractions down to 75  $\,$  µm. Referenced to AS1289.3.6.1 and AS1141.11.

EOOTNOTES

IS Insufficient sample for analysis.

LNR Sample listed, but not received.

\* This analysis is not covered by the scope of accreditation.

\*\* Indicative data, theoretical holding time exceeded.

^ Performed by outside laboratory.

LOR Limit of Reporting

↑↓ Raised or Lowered Limit of Reporting
QFH QC result is above the upper tolerance
QFL QC result is below the lower tolerance
- The sample was not analysed for this analyte

NVL Not Validated

Samples analysed as received.

Solid samples expressed on a dry weight basis.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at <a href="http://www.sgs.com/en/Terms-and-Conditions/General-Conditions-of-Services-English.aspx">http://www.sgs.com/en/Terms-and-Conditions/General-Conditions-of-Services-English.aspx</a>. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full.

Page 4 of 4 22-May-2015





# STATEMENT OF QA/QC PERFORMANCE

CLIENT DETAILS \_\_\_\_\_ LABORATORY DETAILS

Contact Imogen Powell Manager Huong Crawford

Client Parsons Brinckerhoff Australia Pty Ltd Laboratory SGS Alexandria Environmental

Address Level 27, 680 George St Address Unit 16, 33 Maddox St NSW 2000 Address Unit 16, 33 Maddox St Alexandria NSW 2015

Telephone 02 9272 5100 Telephone +61 2 8594 0400

Facsimile 02 9272 5101 Facsimile +61 2 8594 0499

Email ipowell@pb.com.au Email au.environmental.sydney@sgs.com

 Project
 2201679B - Syd Water ESA'S-Ashfield
 SGS Reference
 SE139332 R0

 Order Number
 76563--76567
 Report Number
 0000110833

Samples 38 Date Reported 22 May 2015

COMMENTS

All the laboratory data for each environmental matrix was compared to SGS Environmental Services' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document and was supplied by the Client. This QA/QC Statement must be read in conjunction with the referenced Analytical Report.

The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met with the exception of the following:

Duplicate PAH (Polynuclear Aromatic Hydrocarbons) in Soil 3 items

Total Recoverable Metals in Soil by ICPOES from EPA 200.8 Digest 1 item

Matrix Spike PAH (Polynuclear Aromatic Hydrocarbons) in Soil 3 items

Total Recoverable Metals in Soil by ICPOES from EPA 200.8 Digest 1 item

SAMPLE SUMMARY

Complete documentation received

Sample counts by matrix 34 Soil,2 Material,2 Type of documentation received COC Date documentation received 15/5/2015 Samples received in good order Yes Samples received without headspace 3.2°C Sample temperature upon receipt Yes Sample container provider SGS Turnaround time requested Standard Samples received in correct containers Yes Sufficient sample for analysis Yes Sample cooling method ce Samples clearly labelled Yes

Yes

SGS Australia Pty Ltd ABN 44 000 964 278 Environmental Services Unit 16 33 Maddox St Alexandria NSW 2015 Australia t +61 2 8594 0400 f +61 2 8594 0499 www.au.sgs.com
PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Australia

22/5/2015 Page 1 of 35

22 May 2015

11 Jun 2015

11 Jun 2015

11 Jun 2015

10 Jun 2015



TP13 0.05 AS

TP14\_0.5\_AS

TP14\_1.0\_AS

TP15\_0.5\_AS

TP15\_1.0\_AS

TP15 2.0 AS

TP15\_2.9\_AS

Dup1\_AS

Dup2\_AS

SF139332 022

SE139332.024

SE139332.025

SE139332,027

SE139332.028

SE139332.029

SE139332.030

SE139332.033

SE139332.038

LB077667

LB077667

LB077667

LB077667

LB077668

LB077668

LB077668

LB077668

LB077668

14 May 2015

14 May 2015

14 May 2015

13 May 2015

# HOLDING TIME SUMMARY

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

| Exchangeable Cations and   | Cation Exchange Capaci | ty (CEC/ESP/SAR) |             |             |                |             | Method:        | ME-(AU)-[ENV]AN |
|----------------------------|------------------------|------------------|-------------|-------------|----------------|-------------|----------------|-----------------|
| Sample Name                | Sample No.             | QC Ref           | Sampled     | Received    | Extraction Due | Extracted   | Analysis Due   | Analysed        |
| TP01_0.5_AS                | SE139332.002           | LB077697         | 13 May 2015 | 15 May 2015 | 10 Jun 2015    | 20 May 2015 | 10 Jun 2015    | 22 May 2015     |
| ibre ID in bulk materials  |                        |                  |             |             |                |             | Method:        | ME-(AU)-[ENV]AN |
| Sample Name                | Sample No.             | QC Ref           | Sampled     | Received    | Extraction Due | Extracted   | Analysis Due   | Analysed        |
| ΓΡ14_FC_FRAG Sieve         | SE139332.034           | LB077795         | 13 May 2015 | 15 May 2015 | 12 May 2016    | 21 May 2015 | 12 May 2016    | 22 May 2015     |
| P11_0_AS_FRAG              | SE139332.037           | LB077795         | 13 May 2015 | 15 May 2015 | 12 May 2016    | 21 May 2015 | 12 May 2016    | 22 May 2015     |
| ravimetric Determination o | of Asbestos in Soil    |                  |             |             |                |             | Method:        | ME-(AU)-[ENV]AI |
| Sample Name                | Sample No.             | QC Ref           | Sampled     | Received    | Extraction Due | Extracted   | Analysis Due   | Analysed        |
| P01_0.05_AS                | SE139332.001           | LB077673         | 13 May 2015 | 15 May 2015 | 09 Nov 2015    | 20 May 2015 | 09 Nov 2015    | 22 May 2015     |
| P02_0_AS                   | SE139332.003           | LB077673         | 14 May 2015 | 15 May 2015 | 10 Nov 2015    | 20 May 2015 | 10 Nov 2015    | 22 May 2015     |
| P03_0_AS                   | SE139332.005           | LB077673         | 14 May 2015 | 15 May 2015 | 10 Nov 2015    | 20 May 2015 | 10 Nov 2015    | 22 May 2015     |
| P04_0.05_AS                | SE139332.006           | LB077673         | 13 May 2015 | 15 May 2015 | 09 Nov 2015    | 20 May 2015 | 09 Nov 2015    | 22 May 2015     |
| P05_0_AS                   | SE139332,007           | LB077673         | 14 May 2015 | 15 May 2015 | 10 Nov 2015    | 20 May 2015 | 10 Nov 2015    | 22 May 2015     |
| P06_0.45_AS                | SE139332.008           | LB077673         | 14 May 2015 | 15 May 2015 | 10 Nov 2015    | 20 May 2015 | 10 Nov 2015    | 22 May 2015     |
| P07_0.05_AS                | SE139332.009           | LB077673         | 14 May 2015 | 15 May 2015 | 10 Nov 2015    | 20 May 2015 | 10 Nov 2015    | 22 May 2015     |
| P08_0.05_AS                | SE139332.011           | LB077673         | 14 May 2015 | 15 May 2015 | 10 Nov 2015    | 20 May 2015 | 10 Nov 2015    | 22 May 201      |
| P09_0_AS                   | SE139332.012           | LB077673         | 13 May 2015 | 15 May 2015 | 09 Nov 2015    | 20 May 2015 | 09 Nov 2015    | 22 May 201      |
| P09_0.5_AS                 | SE139332.013           | LB077673         | 13 May 2015 | 15 May 2015 | 09 Nov 2015    | 20 May 2015 | 09 Nov 2015    | 22 May 201      |
| P10_0.05_AS                | SE139332,016           | LB077673         | 13 May 2015 | 15 May 2015 | 09 Nov 2015    | 20 May 2015 | 09 Nov 2015    | 22 May 201      |
| P12_0.05_AS                | SE139332.019           | LB077673         | 13 May 2015 | 15 May 2015 | 09 Nov 2015    | 20 May 2015 | 09 Nov 2015    | 22 May 201      |
| P13_0.05_AS                | SE139332.022           | LB077673         | 14 May 2015 | 15 May 2015 | 10 Nov 2015    | 20 May 2015 | 10 Nov 2015    | 22 May 201      |
| P14_0.05_AS                | SE139332.023           | LB077673         | 14 May 2015 | 15 May 2015 | 10 Nov 2015    | 20 May 2015 | 10 Nov 2015    | 22 May 201      |
| P14_0.5_AS                 | SE139332.024           | LB077673         | 14 May 2015 | 15 May 2015 | 10 Nov 2015    | 20 May 2015 | 10 Nov 2015    | 22 May 201      |
| P15_0_AS                   | SE139332.026           | LB077673         | 13 May 2015 | 15 May 2015 | 09 Nov 2015    | 20 May 2015 | 09 Nov 2015    | 22 May 201      |
| P15_0.5_AS                 | SE139332,027           | LB077673         | 13 May 2015 | 15 May 2015 | 09 Nov 2015    | 20 May 2015 | 09 Nov 2015    | 22 May 201      |
| ercury (dissolved) in Wate | r                      |                  |             |             |                |             | Method: ME-(AU | )-[ENV]AN311/A  |
| Sample Name                | Sample No.             | QC Ref           | Sampled     | Received    | Extraction Due | Extracted   | Analysis Due   | Analysed        |
| B130515                    | SE139332.031           | LB077728         | 13 May 2015 | 15 May 2015 | 10 Jun 2015    | 21 May 2015 | 10 Jun 2015    | 22 May 201      |
| B140515                    | SE139332,032           | LB077728         | 14 May 2015 | 15 May 2015 | 11 Jun 2015    | 21 May 2015 | 11 Jun 2015    | 22 May 201      |
| ercury in Soil             |                        |                  |             |             |                |             | Method:        | ME-(AU)-[ENV]A  |
| ample Name                 | Sample No.             | QC Ref           | Sampled     | Received    | Extraction Due | Extracted   | Analysis Due   | Analysed        |
| P01_0.05_AS                | SE139332.001           | LB077666         | 13 May 2015 | 15 May 2015 | 10 Jun 2015    | 20 May 2015 | 10 Jun 2015    | 22 May 201      |
| P02_0.5_AS                 | SE139332.004           | LB077666         | 14 May 2015 | 15 May 2015 | 11 Jun 2015    | 20 May 2015 | 11 Jun 2015    | 22 May 201      |
| P03_0_AS                   | SE139332.005           | LB077666         | 14 May 2015 | 15 May 2015 | 11 Jun 2015    | 20 May 2015 | 11 Jun 2015    | 22 May 201      |
| P04_0.05_AS                | SE139332,006           | LB077667         | 13 May 2015 | 15 May 2015 | 10 Jun 2015    | 20 May 2015 | 10 Jun 2015    | 22 May 201      |
| P05_0_AS                   | SE139332.007           | LB077667         | 14 May 2015 | 15 May 2015 | 11 Jun 2015    | 20 May 2015 | 11 Jun 2015    | 22 May 201      |
| P06_0.45_AS                | SE139332.008           | LB077667         | 14 May 2015 | 15 May 2015 | 11 Jun 2015    | 20 May 2015 | 11 Jun 2015    | 22 May 201      |
| <br>P07_0.05_AS            | SE139332.009           | LB077667         | 14 May 2015 | 15 May 2015 | 11 Jun 2015    | 20 May 2015 | 11 Jun 2015    | 22 May 201      |
| P07_0.5_AS                 | SE139332.010           | LB077667         | 14 May 2015 | 15 May 2015 | 11 Jun 2015    | 20 May 2015 | 11 Jun 2015    | 22 May 201      |
| P08_0.05_AS                | SE139332.011           | LB077667         | 14 May 2015 | 15 May 2015 | 11 Jun 2015    | 20 May 2015 | 11 Jun 2015    | 22 May 201      |
| P09_0.5_AS                 | SE139332,013           | LB077667         | 13 May 2015 | 15 May 2015 | 10 Jun 2015    | 20 May 2015 | 10 Jun 2015    | 22 May 201      |
| P09_1.0_AS                 | SE139332.014           | LB077667         | 13 May 2015 | 15 May 2015 | 10 Jun 2015    | 20 May 2015 | 10 Jun 2015    | 22 May 201      |
| P09_2.1_AS                 | SE139332.015           | LB077667         | 13 May 2015 | 15 May 2015 | 10 Jun 2015    | 20 May 2015 | 10 Jun 2015    | 22 May 201      |
| P10_0.05_AS                | SE139332.016           | LB077667         | 13 May 2015 | 15 May 2015 | 10 Jun 2015    | 20 May 2015 | 10 Jun 2015    | 22 May 201      |
| P10_0.5_AS                 | SE139332.017           | LB077667         | 13 May 2015 | 15 May 2015 | 10 Jun 2015    | 20 May 2015 | 10 Jun 2015    | 22 May 201      |
| P11_0_AS                   | SE139332.018           | LB077667         | 14 May 2015 | 15 May 2015 | 11 Jun 2015    | 20 May 2015 | 11 Jun 2015    | 22 May 201      |
| P12_0.05_AS                | SE139332,019           | LB077667         | 13 May 2015 | 15 May 2015 | 10 Jun 2015    | 20 May 2015 | 10 Jun 2015    | 22 May 201      |
| P12_0.5_AS                 | SE139332.020           | LB077667         | 13 May 2015 | 15 May 2015 | 10 Jun 2015    | 20 May 2015 | 10 Jun 2015    | 22 May 201      |
| P13_SP_AS                  | SE139332.021           | LB077667         | 14 May 2015 | 15 May 2015 | 11 Jun 2015    | 20 May 2015 | 11 Jun 2015    | 22 May 201      |
|                            |                        |                  | , 2010      |             |                |             |                | , 201           |

22/5/2015 Page 2 of 35

15 May 2015

11 Jun 2015

11 Jun 2015

11 Jun 2015

10 Jun 2015

20 May 2015



SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

#### Moisture Content Method: ME-(AU)-[ENV]AN002

| Sample Name  | Sample No.   | QC Ref   | Sampled     | Received    | Extraction Due | Extracted   | Analysis Due | Analysed    |
|--------------|--------------|----------|-------------|-------------|----------------|-------------|--------------|-------------|
| TP01_0.05_AS | SE139332.001 | LB077709 | 13 May 2015 | 15 May 2015 | 27 May 2015    | 21 May 2015 | 26 May 2015  | 22 May 2015 |
| TP01_0.5_AS  | SE139332.002 | LB077709 | 13 May 2015 | 15 May 2015 | 27 May 2015    | 21 May 2015 | 26 May 2015  | 21 May 2015 |
| TP02_0.5_AS  | SE139332.004 | LB077709 | 14 May 2015 | 15 May 2015 | 28 May 2015    | 21 May 2015 | 26 May 2015  | 22 May 2015 |
| TP03_0_AS    | SE139332.005 | LB077709 | 14 May 2015 | 15 May 2015 | 28 May 2015    | 21 May 2015 | 26 May 2015  | 22 May 2015 |
| TP04_0.05_AS | SE139332.006 | LB077709 | 13 May 2015 | 15 May 2015 | 27 May 2015    | 21 May 2015 | 26 May 2015  | 22 May 2015 |
| TP05_0_AS    | SE139332,007 | LB077709 | 14 May 2015 | 15 May 2015 | 28 May 2015    | 21 May 2015 | 26 May 2015  | 22 May 2015 |
| TP06_0.45_AS | SE139332.008 | LB077709 | 14 May 2015 | 15 May 2015 | 28 May 2015    | 21 May 2015 | 26 May 2015  | 22 May 2015 |
| TP07_0.05_AS | SE139332.009 | LB077709 | 14 May 2015 | 15 May 2015 | 28 May 2015    | 21 May 2015 | 26 May 2015  | 22 May 2015 |
| TP07_0.5_AS  | SE139332.010 | LB077709 | 14 May 2015 | 15 May 2015 | 28 May 2015    | 21 May 2015 | 26 May 2015  | 22 May 2015 |
| TP08_0.05_AS | SE139332.011 | LB077709 | 14 May 2015 | 15 May 2015 | 28 May 2015    | 21 May 2015 | 26 May 2015  | 22 May 2015 |
| TP09_0.5_AS  | SE139332.013 | LB077709 | 13 May 2015 | 15 May 2015 | 27 May 2015    | 21 May 2015 | 26 May 2015  | 22 May 2015 |
| TP09_1.0_AS  | SE139332.014 | LB077709 | 13 May 2015 | 15 May 2015 | 27 May 2015    | 21 May 2015 | 26 May 2015  | 22 May 2015 |
| TP09_2.1_AS  | SE139332.015 | LB077709 | 13 May 2015 | 15 May 2015 | 27 May 2015    | 21 May 2015 | 26 May 2015  | 22 May 2015 |
| TP10_0.05_AS | SE139332.016 | LB077709 | 13 May 2015 | 15 May 2015 | 27 May 2015    | 21 May 2015 | 26 May 2015  | 22 May 2015 |
| TP10_0.5_AS  | SE139332.017 | LB077709 | 13 May 2015 | 15 May 2015 | 27 May 2015    | 21 May 2015 | 26 May 2015  | 22 May 2015 |
| TP11_0_AS    | SE139332.018 | LB077709 | 14 May 2015 | 15 May 2015 | 28 May 2015    | 21 May 2015 | 26 May 2015  | 22 May 2015 |
| TP12_0.05_AS | SE139332.019 | LB077709 | 13 May 2015 | 15 May 2015 | 27 May 2015    | 21 May 2015 | 26 May 2015  | 22 May 2015 |
| TP12_0.5_AS  | SE139332,020 | LB077709 | 13 May 2015 | 15 May 2015 | 27 May 2015    | 21 May 2015 | 26 May 2015  | 22 May 2015 |
| TP13_SP_AS   | SE139332.021 | LB077709 | 14 May 2015 | 15 May 2015 | 28 May 2015    | 21 May 2015 | 26 May 2015  | 22 May 2015 |
| TP13_0.05_AS | SE139332.022 | LB077709 | 14 May 2015 | 15 May 2015 | 28 May 2015    | 21 May 2015 | 26 May 2015  | 22 May 2015 |
| TP14_0.5_AS  | SE139332.024 | LB077709 | 14 May 2015 | 15 May 2015 | 28 May 2015    | 21 May 2015 | 26 May 2015  | 22 May 2015 |
| TP14_1.0_AS  | SE139332.025 | LB077709 | 14 May 2015 | 15 May 2015 | 28 May 2015    | 21 May 2015 | 26 May 2015  | 22 May 2015 |
| TP15_0.5_AS  | SE139332.027 | LB077709 | 13 May 2015 | 15 May 2015 | 27 May 2015    | 21 May 2015 | 26 May 2015  | 22 May 2015 |
| TP15_1.0_AS  | SE139332.028 | LB077709 | 13 May 2015 | 15 May 2015 | 27 May 2015    | 21 May 2015 | 26 May 2015  | 22 May 2015 |
| TP15_2.0_AS  | SE139332.029 | LB077709 | 13 May 2015 | 15 May 2015 | 27 May 2015    | 21 May 2015 | 26 May 2015  | 22 May 2015 |
| TP15_2.9_AS  | SE139332.030 | LB077709 | 13 May 2015 | 15 May 2015 | 27 May 2015    | 21 May 2015 | 26 May 2015  | 22 May 2015 |
| Dup1_AS      | SE139332.033 | LB077709 | 13 May 2015 | 15 May 2015 | 27 May 2015    | 21 May 2015 | 26 May 2015  | 22 May 2015 |
| TB_AS        | SE139332.036 | LB077709 | 13 May 2015 | 15 May 2015 | 27 May 2015    | 21 May 2015 | 26 May 2015  | 22 May 2015 |
| Dup2_AS      | SE139332.038 | LB077709 | 13 May 2015 | 15 May 2015 | 27 May 2015    | 21 May 2015 | 26 May 2015  | 22 May 2015 |

# OC Pesticides in Soil

# Method: ME-(AU)-[ENV]AN400/AN420

| Sample Name    | Sample No.   | QC Ref   | Sampled     | Received E  | Extraction Due | Extracted   | Analysis Due | Analysed    |
|----------------|--------------|----------|-------------|-------------|----------------|-------------|--------------|-------------|
| TP01_0.05_AS S | SE139332.001 | LB077544 | 13 May 2015 | 15 May 2015 | 27 May 2015    | 19 May 2015 | 28 Jun 2015  | 22 May 2015 |
| TP02_0.5_AS S  | SE139332.004 | LB077544 | 14 May 2015 | 15 May 2015 | 28 May 2015    | 19 May 2015 | 28 Jun 2015  | 22 May 2015 |
| TP03_0_AS S    | SE139332.005 | LB077544 | 14 May 2015 | 15 May 2015 | 28 May 2015    | 19 May 2015 | 28 Jun 2015  | 22 May 2015 |
| TP04_0.05_AS S | SE139332.006 | LB077544 | 13 May 2015 | 15 May 2015 | 27 May 2015    | 19 May 2015 | 28 Jun 2015  | 22 May 2015 |
| TP05_0_AS      | SE139332.007 | LB077544 | 14 May 2015 | 15 May 2015 | 28 May 2015    | 19 May 2015 | 28 Jun 2015  | 22 May 2015 |
| TP06_0.45_AS   | SE139332,008 | LB077544 | 14 May 2015 | 15 May 2015 | 28 May 2015    | 19 May 2015 | 28 Jun 2015  | 22 May 2015 |
| TP07_0.05_AS   | SE139332.009 | LB077544 | 14 May 2015 | 15 May 2015 | 28 May 2015    | 19 May 2015 | 28 Jun 2015  | 22 May 2015 |
| TP07_0.5_AS S  | SE139332.010 | LB077544 | 14 May 2015 | 15 May 2015 | 28 May 2015    | 19 May 2015 | 28 Jun 2015  | 22 May 2015 |
| TP08_0.05_AS   | SE139332.011 | LB077544 | 14 May 2015 | 15 May 2015 | 28 May 2015    | 19 May 2015 | 28 Jun 2015  | 22 May 2015 |
| TP09_0.5_AS S  | SE139332.013 | LB077544 | 13 May 2015 | 15 May 2015 | 27 May 2015    | 19 May 2015 | 28 Jun 2015  | 22 May 2015 |
| TP09_1.0_AS    | SE139332.014 | LB077544 | 13 May 2015 | 15 May 2015 | 27 May 2015    | 19 May 2015 | 28 Jun 2015  | 22 May 2015 |
| TP09_2.1_AS    | SE139332.015 | LB077544 | 13 May 2015 | 15 May 2015 | 27 May 2015    | 19 May 2015 | 28 Jun 2015  | 22 May 2015 |
| TP10_0.05_AS   | SE139332.016 | LB077544 | 13 May 2015 | 15 May 2015 | 27 May 2015    | 19 May 2015 | 28 Jun 2015  | 22 May 2015 |
| TP10_0.5_AS    | SE139332.017 | LB077544 | 13 May 2015 | 15 May 2015 | 27 May 2015    | 19 May 2015 | 28 Jun 2015  | 22 May 2015 |
| TP11_0_AS S    | SE139332.018 | LB077544 | 14 May 2015 | 15 May 2015 | 28 May 2015    | 19 May 2015 | 28 Jun 2015  | 22 May 2015 |
| TP12_0.05_AS   | SE139332.019 | LB077544 | 13 May 2015 | 15 May 2015 | 27 May 2015    | 19 May 2015 | 28 Jun 2015  | 22 May 2015 |
| TP12_0.5_AS    | SE139332,020 | LB077544 | 13 May 2015 | 15 May 2015 | 27 May 2015    | 19 May 2015 | 28 Jun 2015  | 22 May 2015 |
| TP13_SP_AS     | SE139332.021 | LB077544 | 14 May 2015 | 15 May 2015 | 28 May 2015    | 19 May 2015 | 28 Jun 2015  | 22 May 2015 |
| TP13_0.05_AS   | SE139332.022 | LB077544 | 14 May 2015 | 15 May 2015 | 28 May 2015    | 19 May 2015 | 28 Jun 2015  | 22 May 2015 |
| TP14_0.5_AS    | SE139332.024 | LB077544 | 14 May 2015 | 15 May 2015 | 28 May 2015    | 19 May 2015 | 28 Jun 2015  | 22 May 2015 |
| TP14_1.0_AS S  | SE139332.025 | LB077546 | 14 May 2015 | 15 May 2015 | 28 May 2015    | 19 May 2015 | 28 Jun 2015  | 22 May 2015 |
| TP15_0.5_AS    | SE139332.027 | LB077546 | 13 May 2015 | 15 May 2015 | 27 May 2015    | 19 May 2015 | 28 Jun 2015  | 22 May 2015 |
| TP15_1.0_AS    | SE139332,028 | LB077546 | 13 May 2015 | 15 May 2015 | 27 May 2015    | 19 May 2015 | 28 Jun 2015  | 22 May 2015 |
| TP15_2.0_AS    | SE139332.029 | LB077546 | 13 May 2015 | 15 May 2015 | 27 May 2015    | 19 May 2015 | 28 Jun 2015  | 22 May 2015 |
| TP15_2.9_AS    | SE139332.030 | LB077546 | 13 May 2015 | 15 May 2015 | 27 May 2015    | 19 May 2015 | 28 Jun 2015  | 22 May 2015 |
| Dup1_AS        | SE139332.033 | LB077546 | 13 May 2015 | 15 May 2015 | 27 May 2015    | 19 May 2015 | 28 Jun 2015  | 22 May 2015 |
| TB_AS          | SE139332.036 | LB077546 | 13 May 2015 | 15 May 2015 | 27 May 2015    | 19 May 2015 | 28 Jun 2015  | 22 May 2015 |
| Dup2_AS        | SE139332.038 | LB077546 | 13 May 2015 | 15 May 2015 | 27 May 2015    | 19 May 2015 | 28 Jun 2015  | 22 May 2015 |

22/5/2015 Page 3 of 35



SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

| OC Pesticides in Water     |                       |          |             |             |                |             | •              | J)-[ENV]AN400/AN           |
|----------------------------|-----------------------|----------|-------------|-------------|----------------|-------------|----------------|----------------------------|
| Sample Name                | Sample No.            | QC Ref   | Sampled     | Received    | Extraction Due | Extracted   | Analysis Due   | Analysed                   |
| FB130515                   | SE139332.031          | LB077619 | 13 May 2015 | 15 May 2015 | 20 May 2015    | 20 May 2015 | 29 Jun 2015    | 22 May 2015                |
| FB140515                   | SE139332.032          | LB077619 | 14 May 2015 | 15 May 2015 | 21 May 2015    | 20 May 2015 | 29 Jun 2015    | 22 May 2015                |
| P Pesticides in Soil       |                       |          |             |             |                |             | Method: ME-(Al | J)-[ENV]AN400/AN           |
| Sample Name                | Sample No.            | QC Ref   | Sampled     | Received    | Extraction Due | Extracted   | Analysis Due   | Analysed                   |
| TP01_0.05_AS               | SE139332.001          | LB077544 | 13 May 2015 | 15 May 2015 | 27 May 2015    | 19 May 2015 | 28 Jun 2015    | 22 May 2015                |
| TP02_0.5_AS                | SE139332.004          | LB077544 | 14 May 2015 | 15 May 2015 | 28 May 2015    | 19 May 2015 | 28 Jun 2015    | 22 May 2015                |
| TP03_0_AS                  | SE139332,005          | LB077544 | 14 May 2015 | 15 May 2015 | 28 May 2015    | 19 May 2015 | 28 Jun 2015    | 22 May 2015                |
| TP04_0.05_AS               | SE139332.006          | LB077544 | 13 May 2015 | 15 May 2015 | 27 May 2015    | 19 May 2015 | 28 Jun 2015    | 22 May 2015                |
| TP05_0_AS                  | SE139332.007          | LB077544 | 14 May 2015 | 15 May 2015 | 28 May 2015    | 19 May 2015 | 28 Jun 2015    | 22 May 2015                |
| TP06_0.45_AS               | SE139332.008          | LB077544 | 14 May 2015 | 15 May 2015 | 28 May 2015    | 19 May 2015 | 28 Jun 2015    | 22 May 2015                |
| TP07_0.05_AS               | SE139332.009          | LB077544 | 14 May 2015 | 15 May 2015 | 28 May 2015    | 19 May 2015 | 28 Jun 2015    | 22 May 2015                |
| TP07_0.5_AS                | SE139332.010          | LB077544 | 14 May 2015 | 15 May 2015 | 28 May 2015    | 19 May 2015 | 28 Jun 2015    | 22 May 2015                |
| TP08_0.05_AS               | SE139332.011          | LB077544 | 14 May 2015 | 15 May 2015 | 28 May 2015    | 19 May 2015 | 28 Jun 2015    | 22 May 2015                |
| TP09_0.5_AS                | SE139332.013          | LB077544 | 13 May 2015 | 15 May 2015 | 27 May 2015    | 19 May 2015 | 28 Jun 2015    | 22 May 2015                |
| TP09_1.0_AS                | SE139332.014          | LB077544 | 13 May 2015 | 15 May 2015 | 27 May 2015    | 19 May 2015 | 28 Jun 2015    | 22 May 2015                |
| TP09_2.1_AS                | SE139332.015          | LB077544 | 13 May 2015 | 15 May 2015 | 27 May 2015    | 19 May 2015 | 28 Jun 2015    | 22 May 2015                |
| TP10_0.05_AS               | SE139332.016          | LB077544 | 13 May 2015 | 15 May 2015 | 27 May 2015    | 19 May 2015 | 28 Jun 2015    | 22 May 2015                |
| TP10_0.5_AS                | SE139332,017          | LB077544 | 13 May 2015 | 15 May 2015 | 27 May 2015    | 19 May 2015 | 28 Jun 2015    | 22 May 2015                |
| TP11_0_AS                  | SE139332.018          | LB077544 | 14 May 2015 | 15 May 2015 | 28 May 2015    | 19 May 2015 | 28 Jun 2015    | 22 May 2015                |
| TP12_0.05_AS               | SE139332.019          | LB077544 | 13 May 2015 | 15 May 2015 | 27 May 2015    | 19 May 2015 | 28 Jun 2015    | 22 May 2015                |
| TP12_0.5_AS                | SE139332.020          | LB077544 | 13 May 2015 | 15 May 2015 | 27 May 2015    | 19 May 2015 | 28 Jun 2015    | 22 May 2015                |
| TP13_SP_AS                 | SE139332.021          | LB077544 | 14 May 2015 | 15 May 2015 | 28 May 2015    | 19 May 2015 | 28 Jun 2015    | 22 May 2015                |
| TP13_0.05_AS               | SE139332.022          | LB077544 | 14 May 2015 | 15 May 2015 | 28 May 2015    | 19 May 2015 | 28 Jun 2015    | 22 May 2015                |
| TP14_0.5_AS                | SE139332,024          | LB077544 | 14 May 2015 | 15 May 2015 | 28 May 2015    | 19 May 2015 | 28 Jun 2015    | 22 May 2015                |
| ΓΡ14_1.0_AS                | SE139332.025          | LB077546 | 14 May 2015 | 15 May 2015 | 28 May 2015    | 19 May 2015 | 28 Jun 2015    | 22 May 2015                |
| ΓΡ15_0.5_AS                | SE139332.027          | LB077546 | 13 May 2015 | 15 May 2015 | 27 May 2015    | 19 May 2015 | 28 Jun 2015    | 22 May 2015                |
| ΓΡ15_1.0_AS                | SE139332.028          | LB077546 | 13 May 2015 | 15 May 2015 | 27 May 2015    | 19 May 2015 | 28 Jun 2015    | 22 May 2015                |
| TP15_2.0_AS                | SE139332.029          | LB077546 | 13 May 2015 | 15 May 2015 | 27 May 2015    | 19 May 2015 | 28 Jun 2015    | 22 May 2015                |
| TP15_2.9_AS                | SE139332.030          | LB077546 | 13 May 2015 | 15 May 2015 | 27 May 2015    | 19 May 2015 | 28 Jun 2015    | 22 May 2015                |
| Dup1_AS                    | SE139332,033          | LB077546 | 13 May 2015 | 15 May 2015 | 27 May 2015    | 19 May 2015 | 28 Jun 2015    | 22 May 2015                |
| TB_AS                      | SE139332.036          | LB077546 | 13 May 2015 | 15 May 2015 | 27 May 2015    | 19 May 2015 | 28 Jun 2015    | 22 May 2015                |
| Dup2_AS                    | SE139332.038          | LB077546 | 13 May 2015 | 15 May 2015 | 27 May 2015    | 19 May 2015 | 28 Jun 2015    | 22 May 2015                |
| P Pesticides in Water      |                       |          |             |             |                |             | Method: ME-(Al | J)-[ENV]AN400/AI           |
| Sample Name                | Sample No.            | QC Ref   | Sampled     | Received    | Extraction Due | Extracted   | Analysis Due   | Analysed                   |
| FB130515                   | SE139332.031          | LB077619 | 13 May 2015 | 15 May 2015 | 20 May 2015    | 20 May 2015 | 29 Jun 2015    | 22 May 2015                |
| FB140515                   | SE139332.031          | LB077619 | 14 May 2015 | 15 May 2015 | 21 May 2015    | 20 May 2015 | 29 Jun 2015    | 22 May 2015<br>22 May 2015 |
|                            |                       | LD0//019 | 14 May 2015 | 15 Way 2015 | 21 Way 2015    | 20 Way 2013 |                |                            |
| AH (Polynuclear Aromatic I | Hydrocarbons) in Soil |          |             |             |                |             | Method:        | ME-(AU)-[ENV]AI            |
| Sample Name                | Sample No.            | QC Ref   | Sampled     | Received    | Extraction Due | Extracted   | Analysis Due   | Analysed                   |
| ΓΡ01_0.05_AS               | SE139332.001          | LB077544 | 13 May 2015 | 15 May 2015 | 27 May 2015    | 19 May 2015 | 28 Jun 2015    | 22 May 2015                |
| ΓΡ02_0.5_AS                | SE139332.004          | LB077544 | 14 May 2015 | 15 May 2015 | 28 May 2015    | 19 May 2015 | 28 Jun 2015    | 22 May 2015                |
| TP03_0_AS                  | SE139332.005          | LB077544 | 14 May 2015 | 15 May 2015 | 28 May 2015    | 19 May 2015 | 28 Jun 2015    | 22 May 2015                |
| ΓP04_0.05_AS               | SE139332.006          | LB077544 | 13 May 2015 | 15 May 2015 | 27 May 2015    | 19 May 2015 | 28 Jun 2015    | 22 May 2015                |
| TP05_0_AS                  | SE139332.007          | LB077544 | 14 May 2015 | 15 May 2015 | 28 May 2015    | 19 May 2015 | 28 Jun 2015    | 22 May 2015                |
| ΓΡ06_0.45_AS               | SE139332.008          | LB077544 | 14 May 2015 | 15 May 2015 | 28 May 2015    | 19 May 2015 | 28 Jun 2015    | 22 May 2015                |
| TP07_0.05_AS               | SE139332.009          | LB077544 | 14 May 2015 | 15 May 2015 | 28 May 2015    | 19 May 2015 | 28 Jun 2015    | 22 May 2015                |
| ГР07_0.5_AS                | SE139332.010          | LB077544 | 14 May 2015 | 15 May 2015 | 28 May 2015    | 19 May 2015 | 28 Jun 2015    | 22 May 2015                |
| TP08_0.05_AS               | SE139332.011          | LB077544 | 14 May 2015 | 15 May 2015 | 28 May 2015    | 19 May 2015 | 28 Jun 2015    | 22 May 2015                |
| TP09_0.5_AS                | SE139332.013          | LB077544 | 13 May 2015 | 15 May 2015 | 27 May 2015    | 19 May 2015 | 28 Jun 2015    | 22 May 2015                |
| TP09_1.0_AS                | SE139332.014          | LB077544 | 13 May 2015 | 15 May 2015 | 27 May 2015    | 19 May 2015 | 28 Jun 2015    | 22 May 2015                |
| ГР09_2.1_AS                | SE139332.015          | LB077544 | 13 May 2015 | 15 May 2015 | 27 May 2015    | 19 May 2015 | 28 Jun 2015    | 22 May 2015                |
| ГР10_0.05_AS               | SE139332.016          | LB077544 | 13 May 2015 | 15 May 2015 | 27 May 2015    | 19 May 2015 | 28 Jun 2015    | 22 May 2015                |
| TP10_0.5_AS                | SE139332.017          | LB077544 | 13 May 2015 | 15 May 2015 | 27 May 2015    | 19 May 2015 | 28 Jun 2015    | 22 May 2015                |
| TP11_0_AS                  | SE139332.018          | LB077544 | 14 May 2015 | 15 May 2015 | 28 May 2015    | 19 May 2015 | 28 Jun 2015    | 22 May 2015                |
| ГР12_0.05_AS               | SE139332.019          | LB077544 | 13 May 2015 | 15 May 2015 | 27 May 2015    | 19 May 2015 | 28 Jun 2015    | 22 May 2015                |
| TP12_0.5_AS                | SE139332.020          | LB077544 | 13 May 2015 | 15 May 2015 | 27 May 2015    | 19 May 2015 | 28 Jun 2015    | 22 May 2015                |
| TP13_SP_AS                 | SE139332.021          | LB077544 | 14 May 2015 | 15 May 2015 | 28 May 2015    | 19 May 2015 | 28 Jun 2015    | 22 May 2015                |
| 11 10_01 _A0               |                       |          |             |             |                |             |                |                            |
| TP13_0.05_AS               | SE139332.022          | LB077544 | 14 May 2015 | 15 May 2015 | 28 May 2015    | 19 May 2015 | 28 Jun 2015    | 22 May 2015                |

22/5/2015 Page 4 of 35



SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

#### PAH (Polynuclear Aromatic Hydrocarbons) in Soil (continued)

#### Method: ME-(AU)-[ENV]AN420

| Sample Name | Sample No.   | QC Ref   | Sampled     | Received    | Extraction Due | Extracted   | Analysis Due | Analysed    |
|-------------|--------------|----------|-------------|-------------|----------------|-------------|--------------|-------------|
| TP14_1.0_AS | SE139332.025 | LB077546 | 14 May 2015 | 15 May 2015 | 28 May 2015    | 19 May 2015 | 28 Jun 2015  | 22 May 2015 |
| TP15_0.5_AS | SE139332.027 | LB077546 | 13 May 2015 | 15 May 2015 | 27 May 2015    | 19 May 2015 | 28 Jun 2015  | 22 May 2015 |
| TP15_1.0_AS | SE139332.028 | LB077546 | 13 May 2015 | 15 May 2015 | 27 May 2015    | 19 May 2015 | 28 Jun 2015  | 22 May 2015 |
| TP15_2.0_AS | SE139332.029 | LB077546 | 13 May 2015 | 15 May 2015 | 27 May 2015    | 19 May 2015 | 28 Jun 2015  | 22 May 2015 |
| TP15_2.9_AS | SE139332.030 | LB077546 | 13 May 2015 | 15 May 2015 | 27 May 2015    | 19 May 2015 | 28 Jun 2015  | 22 May 2015 |
| Dup1_AS     | SE139332.033 | LB077546 | 13 May 2015 | 15 May 2015 | 27 May 2015    | 19 May 2015 | 28 Jun 2015  | 22 May 2015 |
| TB_AS       | SE139332.036 | LB077546 | 13 May 2015 | 15 May 2015 | 27 May 2015    | 19 May 2015 | 28 Jun 2015  | 22 May 2015 |
| Dup2_AS     | SE139332.038 | LB077546 | 13 May 2015 | 15 May 2015 | 27 May 2015    | 19 May 2015 | 28 Jun 2015  | 22 May 2015 |

#### PAH (Polynuclear Aromatic Hydrocarbons) in Water

#### Method: ME-(AU)-[ENV]AN420

| Sample Name | Sample No.   | QC Ref   | Sampled     | Received    | Extraction Due | Extracted   | Analysis Due | Analysed    |
|-------------|--------------|----------|-------------|-------------|----------------|-------------|--------------|-------------|
| FB130515    | SE139332.031 | LB077619 | 13 May 2015 | 15 May 2015 | 20 May 2015    | 20 May 2015 | 29 Jun 2015  | 22 May 2015 |
| FB140515    | SE139332.032 | LB077619 | 14 May 2015 | 15 May 2015 | 21 May 2015    | 20 May 2015 | 29 Jun 2015  | 22 May 2015 |

#### PCBs in Soil

#### Method: ME-(AU)-[ENV]AN400/AN420

| Sample Name  | Sample No.   | QC Ref   | Sampled     | Received    | Extraction Due | Extracted   | Analysis Due | Analysed    |
|--------------|--------------|----------|-------------|-------------|----------------|-------------|--------------|-------------|
| TP01_0.05_AS | SE139332.001 | LB077544 | 13 May 2015 | 15 May 2015 | 27 May 2015    | 19 May 2015 | 28 Jun 2015  | 22 May 2015 |
| TP02_0.5_AS  | SE139332.004 | LB077544 | 14 May 2015 | 15 May 2015 | 28 May 2015    | 19 May 2015 | 28 Jun 2015  | 22 May 2015 |
| TP03_0_AS    | SE139332.005 | LB077544 | 14 May 2015 | 15 May 2015 | 28 May 2015    | 19 May 2015 | 28 Jun 2015  | 22 May 2015 |
| TP04_0.05_AS | SE139332.006 | LB077544 | 13 May 2015 | 15 May 2015 | 27 May 2015    | 19 May 2015 | 28 Jun 2015  | 22 May 2015 |
| TP05_0_AS    | SE139332.007 | LB077544 | 14 May 2015 | 15 May 2015 | 28 May 2015    | 19 May 2015 | 28 Jun 2015  | 22 May 2015 |
| TP06_0.45_AS | SE139332.008 | LB077544 | 14 May 2015 | 15 May 2015 | 28 May 2015    | 19 May 2015 | 28 Jun 2015  | 22 May 2015 |
| TP07_0.05_AS | SE139332.009 | LB077544 | 14 May 2015 | 15 May 2015 | 28 May 2015    | 19 May 2015 | 28 Jun 2015  | 22 May 2015 |
| TP07_0.5_AS  | SE139332.010 | LB077544 | 14 May 2015 | 15 May 2015 | 28 May 2015    | 19 May 2015 | 28 Jun 2015  | 22 May 2015 |
| TP08_0.05_AS | SE139332.011 | LB077544 | 14 May 2015 | 15 May 2015 | 28 May 2015    | 19 May 2015 | 28 Jun 2015  | 22 May 2015 |
| TP09_0.5_AS  | SE139332.013 | LB077544 | 13 May 2015 | 15 May 2015 | 27 May 2015    | 19 May 2015 | 28 Jun 2015  | 22 May 2015 |
| TP09_1.0_AS  | SE139332.014 | LB077544 | 13 May 2015 | 15 May 2015 | 27 May 2015    | 19 May 2015 | 28 Jun 2015  | 22 May 2015 |
| TP09_2.1_AS  | SE139332.015 | LB077544 | 13 May 2015 | 15 May 2015 | 27 May 2015    | 19 May 2015 | 28 Jun 2015  | 22 May 2015 |
| TP10_0.05_AS | SE139332.016 | LB077544 | 13 May 2015 | 15 May 2015 | 27 May 2015    | 19 May 2015 | 28 Jun 2015  | 22 May 2015 |
| TP10_0.5_AS  | SE139332.017 | LB077544 | 13 May 2015 | 15 May 2015 | 27 May 2015    | 19 May 2015 | 28 Jun 2015  | 22 May 2015 |
| TP11_0_AS    | SE139332.018 | LB077544 | 14 May 2015 | 15 May 2015 | 28 May 2015    | 19 May 2015 | 28 Jun 2015  | 22 May 2015 |
| TP12_0.05_AS | SE139332.019 | LB077544 | 13 May 2015 | 15 May 2015 | 27 May 2015    | 19 May 2015 | 28 Jun 2015  | 22 May 2015 |
| TP12_0.5_AS  | SE139332.020 | LB077544 | 13 May 2015 | 15 May 2015 | 27 May 2015    | 19 May 2015 | 28 Jun 2015  | 22 May 2015 |
| TP13_SP_AS   | SE139332.021 | LB077544 | 14 May 2015 | 15 May 2015 | 28 May 2015    | 19 May 2015 | 28 Jun 2015  | 22 May 2015 |
| TP13_0.05_AS | SE139332.022 | LB077544 | 14 May 2015 | 15 May 2015 | 28 May 2015    | 19 May 2015 | 28 Jun 2015  | 22 May 2015 |
| TP14_0.5_AS  | SE139332.024 | LB077544 | 14 May 2015 | 15 May 2015 | 28 May 2015    | 19 May 2015 | 28 Jun 2015  | 22 May 2015 |
| TP14_1.0_AS  | SE139332.025 | LB077546 | 14 May 2015 | 15 May 2015 | 28 May 2015    | 19 May 2015 | 28 Jun 2015  | 22 May 2015 |
| TP15_0.5_AS  | SE139332.027 | LB077546 | 13 May 2015 | 15 May 2015 | 27 May 2015    | 19 May 2015 | 28 Jun 2015  | 22 May 2015 |
| TP15_1.0_AS  | SE139332,028 | LB077546 | 13 May 2015 | 15 May 2015 | 27 May 2015    | 19 May 2015 | 28 Jun 2015  | 22 May 2015 |
| TP15_2.0_AS  | SE139332.029 | LB077546 | 13 May 2015 | 15 May 2015 | 27 May 2015    | 19 May 2015 | 28 Jun 2015  | 22 May 2015 |
| TP15_2.9_AS  | SE139332.030 | LB077546 | 13 May 2015 | 15 May 2015 | 27 May 2015    | 19 May 2015 | 28 Jun 2015  | 22 May 2015 |
| Dup1_AS      | SE139332.033 | LB077546 | 13 May 2015 | 15 May 2015 | 27 May 2015    | 19 May 2015 | 28 Jun 2015  | 22 May 2015 |
| TB_AS        | SE139332.036 | LB077546 | 13 May 2015 | 15 May 2015 | 27 May 2015    | 19 May 2015 | 28 Jun 2015  | 22 May 2015 |
| Dup2_AS      | SE139332.038 | LB077546 | 13 May 2015 | 15 May 2015 | 27 May 2015    | 19 May 2015 | 28 Jun 2015  | 22 May 2015 |

#### PCBs in Water

# Method: ME-(AU)-[ENV]AN400/AN420

| Sample Name | Sample No.   | QC Ref   | Sampled     | Received    | Extraction Due | Extracted   | Analysis Due | Analysed    |
|-------------|--------------|----------|-------------|-------------|----------------|-------------|--------------|-------------|
| FB130515    | SE139332.031 | LB077619 | 13 May 2015 | 15 May 2015 | 20 May 2015    | 20 May 2015 | 29 Jun 2015  | 22 May 2015 |
| FB140515    | SE139332.032 | LB077619 | 14 May 2015 | 15 May 2015 | 21 May 2015    | 20 May 2015 | 29 Jun 2015  | 22 May 2015 |

#### pH in soil (1:5)

# Method: ME-(AU)-[ENV]AN101

| Sample Name  | Sample No.   | QC Ref   | Sampled     | Received    | Extraction Due | Extracted   | Analysis Due | Analysed    |
|--------------|--------------|----------|-------------|-------------|----------------|-------------|--------------|-------------|
| TP01_0.05_AS | SE139332.001 | LB077736 | 13 May 2015 | 15 May 2015 | 20 May 2015    | 20 May 2015 | 21 May 2015  | 20 May 2015 |
| TP01_0.5_AS  | SE139332.002 | LB077736 | 13 May 2015 | 15 May 2015 | 20 May 2015    | 20 May 2015 | 21 May 2015  | 20 May 2015 |
| TP02_0.5_AS  | SE139332.004 | LB077736 | 14 May 2015 | 15 May 2015 | 21 May 2015    | 20 May 2015 | 21 May 2015  | 20 May 2015 |
| TP03_0_AS    | SE139332.005 | LB077736 | 14 May 2015 | 15 May 2015 | 21 May 2015    | 20 May 2015 | 21 May 2015  | 20 May 2015 |
| TP04_0.05_AS | SE139332.006 | LB077736 | 13 May 2015 | 15 May 2015 | 20 May 2015    | 20 May 2015 | 21 May 2015  | 20 May 2015 |
| TP05_0_AS    | SE139332,007 | LB077736 | 14 May 2015 | 15 May 2015 | 21 May 2015    | 20 May 2015 | 21 May 2015  | 20 May 2015 |
| TP06_0.45_AS | SE139332.008 | LB077736 | 14 May 2015 | 15 May 2015 | 21 May 2015    | 20 May 2015 | 21 May 2015  | 20 May 2015 |
| TP07_0.05_AS | SE139332.009 | LB077736 | 14 May 2015 | 15 May 2015 | 21 May 2015    | 20 May 2015 | 21 May 2015  | 20 May 2015 |
| TP08_0.05_AS | SE139332.011 | LB077736 | 14 May 2015 | 15 May 2015 | 21 May 2015    | 20 May 2015 | 21 May 2015  | 20 May 2015 |
| TP09_0.5_AS  | SE139332.013 | LB077736 | 13 May 2015 | 15 May 2015 | 20 May 2015    | 20 May 2015 | 21 May 2015  | 20 May 2015 |

22/5/2015 Page 5 of 35



SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

| pH in soil (1:5) (continued) | Method: ME-(AU)-[ENV]AN101 |
|------------------------------|----------------------------|
|------------------------------|----------------------------|

| Sample Name  | Sample No.   | QC Ref   | Sampled     | Received    | Extraction Due | Extracted   | Analysis Due | Analysed    |
|--------------|--------------|----------|-------------|-------------|----------------|-------------|--------------|-------------|
| TP10_0.05_AS | SE139332.016 | LB077736 | 13 May 2015 | 15 May 2015 | 20 May 2015    | 20 May 2015 | 21 May 2015  | 20 May 2015 |
| TP11_0_AS    | SE139332.018 | LB077736 | 14 May 2015 | 15 May 2015 | 21 May 2015    | 20 May 2015 | 21 May 2015  | 20 May 2015 |
| TP12_0.5_AS  | SE139332.020 | LB077736 | 13 May 2015 | 15 May 2015 | 20 May 2015    | 20 May 2015 | 21 May 2015  | 20 May 2015 |
| TP13_0.05_AS | SE139332.022 | LB077736 | 14 May 2015 | 15 May 2015 | 21 May 2015    | 20 May 2015 | 21 May 2015  | 20 May 2015 |
| TP14_0.5_AS  | SE139332.024 | LB077736 | 14 May 2015 | 15 May 2015 | 21 May 2015    | 20 May 2015 | 21 May 2015  | 20 May 2015 |
| TP15_0.5_AS  | SE139332,027 | LB077736 | 13 May 2015 | 15 May 2015 | 20 May 2015    | 20 May 2015 | 21 May 2015  | 20 May 2015 |

#### Total Recoverable Metals in Soil by ICPOES from EPA 200.8 Digest

#### Method: ME-(AU)-[ENV]AN040/AN320

| Sample Name  | Sample No.   | QC Ref   | Sampled     | Received    | Extraction Due | Extracted   | Analysis Due | Analysed    |
|--------------|--------------|----------|-------------|-------------|----------------|-------------|--------------|-------------|
| TP01_0.05_AS | SE139332.001 | LB077689 | 13 May 2015 | 15 May 2015 | 09 Nov 2015    | 20 May 2015 | 09 Nov 2015  | 22 May 2015 |
| TP02_0.5_AS  | SE139332.004 | LB077689 | 14 May 2015 | 15 May 2015 | 10 Nov 2015    | 20 May 2015 | 10 Nov 2015  | 22 May 2015 |
| TP03_0_AS    | SE139332.005 | LB077689 | 14 May 2015 | 15 May 2015 | 10 Nov 2015    | 20 May 2015 | 10 Nov 2015  | 22 May 2015 |
| TP04_0.05_AS | SE139332.006 | LB077689 | 13 May 2015 | 15 May 2015 | 09 Nov 2015    | 20 May 2015 | 09 Nov 2015  | 22 May 2015 |
| TP05_0_AS    | SE139332.007 | LB077689 | 14 May 2015 | 15 May 2015 | 10 Nov 2015    | 20 May 2015 | 10 Nov 2015  | 22 May 2015 |
| TP06_0.45_AS | SE139332.008 | LB077691 | 14 May 2015 | 15 May 2015 | 10 Nov 2015    | 20 May 2015 | 10 Nov 2015  | 22 May 2015 |
| TP07_0.05_AS | SE139332.009 | LB077691 | 14 May 2015 | 15 May 2015 | 10 Nov 2015    | 20 May 2015 | 10 Nov 2015  | 22 May 2015 |
| TP07_0.5_AS  | SE139332.010 | LB077691 | 14 May 2015 | 15 May 2015 | 10 Nov 2015    | 20 May 2015 | 10 Nov 2015  | 22 May 2015 |
| TP08_0.05_AS | SE139332.011 | LB077691 | 14 May 2015 | 15 May 2015 | 10 Nov 2015    | 20 May 2015 | 10 Nov 2015  | 22 May 2015 |
| TP09_0.5_AS  | SE139332.013 | LB077691 | 13 May 2015 | 15 May 2015 | 09 Nov 2015    | 20 May 2015 | 09 Nov 2015  | 22 May 2015 |
| TP09_1.0_AS  | SE139332,014 | LB077691 | 13 May 2015 | 15 May 2015 | 09 Nov 2015    | 20 May 2015 | 09 Nov 2015  | 22 May 2015 |
| TP09_2.1_AS  | SE139332.015 | LB077691 | 13 May 2015 | 15 May 2015 | 09 Nov 2015    | 20 May 2015 | 09 Nov 2015  | 22 May 2015 |
| TP10_0.05_AS | SE139332.016 | LB077691 | 13 May 2015 | 15 May 2015 | 09 Nov 2015    | 20 May 2015 | 09 Nov 2015  | 22 May 2015 |
| TP10_0.5_AS  | SE139332.017 | LB077691 | 13 May 2015 | 15 May 2015 | 09 Nov 2015    | 20 May 2015 | 09 Nov 2015  | 22 May 2015 |
| TP11_0_AS    | SE139332.018 | LB077691 | 14 May 2015 | 15 May 2015 | 10 Nov 2015    | 20 May 2015 | 10 Nov 2015  | 22 May 2015 |
| TP12_0.05_AS | SE139332.019 | LB077691 | 13 May 2015 | 15 May 2015 | 09 Nov 2015    | 20 May 2015 | 09 Nov 2015  | 22 May 2015 |
| TP12_0.5_AS  | SE139332,020 | LB077691 | 13 May 2015 | 15 May 2015 | 09 Nov 2015    | 20 May 2015 | 09 Nov 2015  | 22 May 2015 |
| TP13_SP_AS   | SE139332.021 | LB077691 | 14 May 2015 | 15 May 2015 | 10 Nov 2015    | 20 May 2015 | 10 Nov 2015  | 22 May 2015 |
| TP13_0.05_AS | SE139332.022 | LB077691 | 14 May 2015 | 15 May 2015 | 10 Nov 2015    | 20 May 2015 | 10 Nov 2015  | 22 May 2015 |
| TP14_0.5_AS  | SE139332.024 | LB077691 | 14 May 2015 | 15 May 2015 | 10 Nov 2015    | 20 May 2015 | 10 Nov 2015  | 22 May 2015 |
| TP14_1.0_AS  | SE139332.025 | LB077691 | 14 May 2015 | 15 May 2015 | 10 Nov 2015    | 20 May 2015 | 10 Nov 2015  | 22 May 2015 |
| TP15_0.5_AS  | SE139332.027 | LB077691 | 13 May 2015 | 15 May 2015 | 09 Nov 2015    | 20 May 2015 | 09 Nov 2015  | 22 May 2015 |
| TP15_1.0_AS  | SE139332,028 | LB077691 | 13 May 2015 | 15 May 2015 | 09 Nov 2015    | 20 May 2015 | 09 Nov 2015  | 22 May 2015 |
| TP15_2.0_AS  | SE139332.029 | LB077691 | 13 May 2015 | 15 May 2015 | 09 Nov 2015    | 20 May 2015 | 09 Nov 2015  | 22 May 2015 |
| TP15_2.9_AS  | SE139332.030 | LB077692 | 13 May 2015 | 15 May 2015 | 09 Nov 2015    | 20 May 2015 | 09 Nov 2015  | 22 May 2015 |
| Dup1_AS      | SE139332,033 | LB077692 | 13 May 2015 | 15 May 2015 | 09 Nov 2015    | 20 May 2015 | 09 Nov 2015  | 22 May 2015 |
| Dup2_AS      | SE139332.038 | LB077692 | 13 May 2015 | 15 May 2015 | 09 Nov 2015    | 20 May 2015 | 09 Nov 2015  | 22 May 2015 |

#### Trace Metals (Dissolved) in Water by ICPMS

# Method: ME-(AU)-[ENV]AN318

| Sample Name | Sample No.   | QC Ref   | Samp <b>l</b> ed | Received    | Extraction Due | Extracted   | Analysis Due | Analysed    |
|-------------|--------------|----------|------------------|-------------|----------------|-------------|--------------|-------------|
| FB130515    | SE139332.031 | LB077648 | 13 May 2015      | 15 May 2015 | 09 Nov 2015    | 20 May 2015 | 09 Nov 2015  | 21 May 2015 |
| FB140515    | SE139332.032 | LB077648 | 14 May 2015      | 15 May 2015 | 10 Nov 2015    | 20 May 2015 | 10 Nov 2015  | 21 May 2015 |

#### TRH (Total Recoverable Hydrocarbons) in Soil

#### Method: ME-(AU)-[ENV]AN403 Sample Name Sample No. OC Bef Sampled Deceived Extraction Due Extracted Analysis Due Analysis

| Sample Maine | Sample No.   | QC Rei   | Sampleu     | Received    | Extraction Due | Extracted   | Allalysis Due | Allalyseu   |
|--------------|--------------|----------|-------------|-------------|----------------|-------------|---------------|-------------|
| TP01_0.05_AS | SE139332,001 | LB077544 | 13 May 2015 | 15 May 2015 | 27 May 2015    | 19 May 2015 | 28 Jun 2015   | 22 May 2015 |
| TP02_0.5_AS  | SE139332.004 | LB077544 | 14 May 2015 | 15 May 2015 | 28 May 2015    | 19 May 2015 | 28 Jun 2015   | 22 May 2015 |
| TP03_0_AS    | SE139332.005 | LB077544 | 14 May 2015 | 15 May 2015 | 28 May 2015    | 19 May 2015 | 28 Jun 2015   | 22 May 2015 |
| TP04_0.05_AS | SE139332.006 | LB077544 | 13 May 2015 | 15 May 2015 | 27 May 2015    | 19 May 2015 | 28 Jun 2015   | 22 May 2015 |
| TP05_0_AS    | SE139332.007 | LB077544 | 14 May 2015 | 15 May 2015 | 28 May 2015    | 19 May 2015 | 28 Jun 2015   | 22 May 2015 |
| TP06_0.45_AS | SE139332,008 | LB077544 | 14 May 2015 | 15 May 2015 | 28 May 2015    | 19 May 2015 | 28 Jun 2015   | 22 May 2015 |
| TP07_0.05_AS | SE139332,009 | LB077544 | 14 May 2015 | 15 May 2015 | 28 May 2015    | 19 May 2015 | 28 Jun 2015   | 22 May 2015 |
| TP07_0.5_AS  | SE139332.010 | LB077544 | 14 May 2015 | 15 May 2015 | 28 May 2015    | 19 May 2015 | 28 Jun 2015   | 22 May 2015 |
| TP08_0.05_AS | SE139332.011 | LB077544 | 14 May 2015 | 15 May 2015 | 28 May 2015    | 19 May 2015 | 28 Jun 2015   | 22 May 2015 |
| TP09_0.5_AS  | SE139332.013 | LB077544 | 13 May 2015 | 15 May 2015 | 27 May 2015    | 19 May 2015 | 28 Jun 2015   | 22 May 2015 |
| TP09_1.0_AS  | SE139332.014 | LB077544 | 13 May 2015 | 15 May 2015 | 27 May 2015    | 19 May 2015 | 28 Jun 2015   | 22 May 2015 |
| TP09_2.1_AS  | SE139332,015 | LB077544 | 13 May 2015 | 15 May 2015 | 27 May 2015    | 19 May 2015 | 28 Jun 2015   | 22 May 2015 |
| TP10_0.05_AS | SE139332.016 | LB077544 | 13 May 2015 | 15 May 2015 | 27 May 2015    | 19 May 2015 | 28 Jun 2015   | 22 May 2015 |
| TP10_0.5_AS  | SE139332.017 | LB077544 | 13 May 2015 | 15 May 2015 | 27 May 2015    | 19 May 2015 | 28 Jun 2015   | 22 May 2015 |
| TP11_0_AS    | SE139332.018 | LB077544 | 14 May 2015 | 15 May 2015 | 28 May 2015    | 19 May 2015 | 28 Jun 2015   | 22 May 2015 |
| TP12_0.05_AS | SE139332.019 | LB077544 | 13 May 2015 | 15 May 2015 | 27 May 2015    | 19 May 2015 | 28 Jun 2015   | 22 May 2015 |
| TP12_0.5_AS  | SE139332.020 | LB077544 | 13 May 2015 | 15 May 2015 | 27 May 2015    | 19 May 2015 | 28 Jun 2015   | 22 May 2015 |
|              |              |          |             |             |                |             |               |             |

22/5/2015 Page 6 of 35



SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

#### TRH (Total Recoverable Hydrocarbons) in Soil (continued)

#### Method: ME-(AU)-[ENV]AN403

| Sample Name  | Sample No.   | QC Ref   | Sampled     | Received    | Extraction Due | Extracted   | Analysis Due | Analysed    |
|--------------|--------------|----------|-------------|-------------|----------------|-------------|--------------|-------------|
| TP13_SP_AS   | SE139332.021 | LB077544 | 14 May 2015 | 15 May 2015 | 28 May 2015    | 19 May 2015 | 28 Jun 2015  | 22 May 2015 |
| TP13_0.05_AS | SE139332.022 | LB077544 | 14 May 2015 | 15 May 2015 | 28 May 2015    | 19 May 2015 | 28 Jun 2015  | 22 May 2015 |
| TP14_0.5_AS  | SE139332.024 | LB077544 | 14 May 2015 | 15 May 2015 | 28 May 2015    | 19 May 2015 | 28 Jun 2015  | 22 May 2015 |
| TP14_1.0_AS  | SE139332.025 | LB077546 | 14 May 2015 | 15 May 2015 | 28 May 2015    | 19 May 2015 | 28 Jun 2015  | 22 May 2015 |
| TP15_0.5_AS  | SE139332.027 | LB077546 | 13 May 2015 | 15 May 2015 | 27 May 2015    | 19 May 2015 | 28 Jun 2015  | 22 May 2015 |
| TP15_1.0_AS  | SE139332,028 | LB077546 | 13 May 2015 | 15 May 2015 | 27 May 2015    | 19 May 2015 | 28 Jun 2015  | 22 May 2015 |
| TP15_2.0_AS  | SE139332.029 | LB077546 | 13 May 2015 | 15 May 2015 | 27 May 2015    | 19 May 2015 | 28 Jun 2015  | 22 May 2015 |
| TP15_2.9_AS  | SE139332.030 | LB077546 | 13 May 2015 | 15 May 2015 | 27 May 2015    | 19 May 2015 | 28 Jun 2015  | 22 May 2015 |
| Dup1_AS      | SE139332.033 | LB077546 | 13 May 2015 | 15 May 2015 | 27 May 2015    | 19 May 2015 | 28 Jun 2015  | 22 May 2015 |
| TB_AS        | SE139332.036 | LB077546 | 13 May 2015 | 15 May 2015 | 27 May 2015    | 19 May 2015 | 28 Jun 2015  | 22 May 2015 |
| Dup2_AS      | SE139332.038 | LB077546 | 13 May 2015 | 15 May 2015 | 27 May 2015    | 19 May 2015 | 28 Jun 2015  | 22 May 2015 |

#### TRH (Total Recoverable Hydrocarbons) in Water

#### Method: ME-(AU)-[ENV]AN403

| Sample Name | Sample No.   | QC Ref   | Samp <b>l</b> ed | Received    | Extraction Due | Extracted   | Analysis Due | Analysed    |
|-------------|--------------|----------|------------------|-------------|----------------|-------------|--------------|-------------|
| FB130515    | SE139332.031 | LB077619 | 13 May 2015      | 15 May 2015 | 20 May 2015    | 20 May 2015 | 29 Jun 2015  | 22 May 2015 |
| FB140515    | SE139332.032 | LB077619 | 14 May 2015      | 15 May 2015 | 21 May 2015    | 20 May 2015 | 29 Jun 2015  | 22 May 2015 |

# VOC's in Soil

# Method: ME-(AU)-[ENV]AN433/AN434

| Sample Name  | Sample No.   | QC Ref   | Sampled     | Received    | Extraction Due | Extracted   | Analysis Due | Analysed    |
|--------------|--------------|----------|-------------|-------------|----------------|-------------|--------------|-------------|
| TP01_0.05_AS | SE139332.001 | LB077627 | 13 May 2015 | 15 May 2015 | 27 May 2015    | 20 May 2015 | 29 Jun 2015  | 22 May 2015 |
| TP02_0.5_AS  | SE139332.004 | LB077627 | 14 May 2015 | 15 May 2015 | 28 May 2015    | 20 May 2015 | 29 Jun 2015  | 22 May 2015 |
| TP03_0_AS    | SE139332.005 | LB077627 | 14 May 2015 | 15 May 2015 | 28 May 2015    | 20 May 2015 | 29 Jun 2015  | 22 May 2015 |
| TP04_0.05_AS | SE139332.006 | LB077627 | 13 May 2015 | 15 May 2015 | 27 May 2015    | 20 May 2015 | 29 Jun 2015  | 22 May 2015 |
| TP05_0_AS    | SE139332.007 | LB077627 | 14 May 2015 | 15 May 2015 | 28 May 2015    | 20 May 2015 | 29 Jun 2015  | 22 May 2015 |
| TP06_0.45_AS | SE139332.008 | LB077627 | 14 May 2015 | 15 May 2015 | 28 May 2015    | 20 May 2015 | 29 Jun 2015  | 22 May 2015 |
| TP07_0.05_AS | SE139332.009 | LB077627 | 14 May 2015 | 15 May 2015 | 28 May 2015    | 20 May 2015 | 29 Jun 2015  | 22 May 2015 |
| TP08_0.05_AS | SE139332.011 | LB077627 | 14 May 2015 | 15 May 2015 | 28 May 2015    | 20 May 2015 | 29 Jun 2015  | 22 May 2015 |
| TP09_0.5_AS  | SE139332.013 | LB077627 | 13 May 2015 | 15 May 2015 | 27 May 2015    | 20 May 2015 | 29 Jun 2015  | 22 May 2015 |
| TP09_1.0_AS  | SE139332.014 | LB077627 | 13 May 2015 | 15 May 2015 | 27 May 2015    | 20 May 2015 | 29 Jun 2015  | 22 May 2015 |
| TP10_0.05_AS | SE139332.016 | LB077627 | 13 May 2015 | 15 May 2015 | 27 May 2015    | 20 May 2015 | 29 Jun 2015  | 22 May 2015 |
| TP11_0_AS    | SE139332.018 | LB077627 | 14 May 2015 | 15 May 2015 | 28 May 2015    | 20 May 2015 | 29 Jun 2015  | 22 May 2015 |
| TP12_0.05_AS | SE139332.019 | LB077627 | 13 May 2015 | 15 May 2015 | 27 May 2015    | 20 May 2015 | 29 Jun 2015  | 22 May 2015 |
| TP12_0.5_AS  | SE139332.020 | LB077627 | 13 May 2015 | 15 May 2015 | 27 May 2015    | 20 May 2015 | 29 Jun 2015  | 22 May 2015 |
| TP13_0.05_AS | SE139332.022 | LB077627 | 14 May 2015 | 15 May 2015 | 28 May 2015    | 20 May 2015 | 29 Jun 2015  | 22 May 2015 |
| TP14_0.5_AS  | SE139332.024 | LB077627 | 14 May 2015 | 15 May 2015 | 28 May 2015    | 20 May 2015 | 29 Jun 2015  | 22 May 2015 |
| TP15_0.5_AS  | SE139332.027 | LB077627 | 13 May 2015 | 15 May 2015 | 27 May 2015    | 20 May 2015 | 29 Jun 2015  | 22 May 2015 |
| TP15_1.0_AS  | SE139332.028 | LB077628 | 13 May 2015 | 15 May 2015 | 27 May 2015    | 20 May 2015 | 29 Jun 2015  | 22 May 2015 |
| Dup1_AS      | SE139332.033 | LB077628 | 13 May 2015 | 15 May 2015 | 27 May 2015    | 20 May 2015 | 29 Jun 2015  | 22 May 2015 |
| TS_AS        | SE139332,035 | LB077628 | 13 May 2015 | 15 May 2015 | 27 May 2015    | 20 May 2015 | 29 Jun 2015  | 22 May 2015 |
| TB_AS        | SE139332.036 | LB077628 | 13 May 2015 | 15 May 2015 | 27 May 2015    | 20 May 2015 | 29 Jun 2015  | 22 May 2015 |
|              |              |          |             |             |                |             |              |             |

#### VOCs in Water

# Method: ME-(AU)-[ENV]AN433/AN434

| Sample Name | Sample No.   | QC Ref   | Sampled     | Received    | Extraction Due | Extracted   | Analysis Due | Analysed    |
|-------------|--------------|----------|-------------|-------------|----------------|-------------|--------------|-------------|
| FB130515    | SE139332.031 | LB077578 | 13 May 2015 | 15 May 2015 | 20 May 2015    | 19 May 2015 | 28 Jun 2015  | 20 May 2015 |
| FB140515    | SE139332.032 | LB077578 | 14 May 2015 | 15 May 2015 | 21 May 2015    | 19 May 2015 | 28 Jun 2015  | 20 May 2015 |

# Volatile Petroleum Hydrocarbons in Soil

# Method: ME-(AU)-[ENV]AN433/AN434/AN410

| Sample Name  | Sample No.   | QC Ref   | Sampled     | Received    | Extraction Due | Extracted   | Analysis Due | Analysed    |
|--------------|--------------|----------|-------------|-------------|----------------|-------------|--------------|-------------|
| TP01_0.05_AS | SE139332.001 | LB077627 | 13 May 2015 | 15 May 2015 | 27 May 2015    | 20 May 2015 | 29 Jun 2015  | 22 May 2015 |
| TP02_0.5_AS  | SE139332.004 | LB077627 | 14 May 2015 | 15 May 2015 | 28 May 2015    | 20 May 2015 | 29 Jun 2015  | 22 May 2015 |
| TP03_0_AS    | SE139332.005 | LB077627 | 14 May 2015 | 15 May 2015 | 28 May 2015    | 20 May 2015 | 29 Jun 2015  | 22 May 2015 |
| TP04_0.05_AS | SE139332,006 | LB077627 | 13 May 2015 | 15 May 2015 | 27 May 2015    | 20 May 2015 | 29 Jun 2015  | 22 May 2015 |
| TP05_0_AS    | SE139332.007 | LB077627 | 14 May 2015 | 15 May 2015 | 28 May 2015    | 20 May 2015 | 29 Jun 2015  | 22 May 2015 |
| TP06_0.45_AS | SE139332.008 | LB077627 | 14 May 2015 | 15 May 2015 | 28 May 2015    | 20 May 2015 | 29 Jun 2015  | 22 May 2015 |
| TP07_0.05_AS | SE139332.009 | LB077627 | 14 May 2015 | 15 May 2015 | 28 May 2015    | 20 May 2015 | 29 Jun 2015  | 22 May 2015 |
| TP08_0.05_AS | SE139332.011 | LB077627 | 14 May 2015 | 15 May 2015 | 28 May 2015    | 20 May 2015 | 29 Jun 2015  | 22 May 2015 |
| TP09_0.5_AS  | SE139332.013 | LB077627 | 13 May 2015 | 15 May 2015 | 27 May 2015    | 20 May 2015 | 29 Jun 2015  | 22 May 2015 |
| TP09_1.0_AS  | SE139332.014 | LB077627 | 13 May 2015 | 15 May 2015 | 27 May 2015    | 20 May 2015 | 29 Jun 2015  | 22 May 2015 |
| TP10_0.05_AS | SE139332.016 | LB077627 | 13 May 2015 | 15 May 2015 | 27 May 2015    | 20 May 2015 | 29 Jun 2015  | 22 May 2015 |
| TP11_0_AS    | SE139332.018 | LB077627 | 14 May 2015 | 15 May 2015 | 28 May 2015    | 20 May 2015 | 29 Jun 2015  | 22 May 2015 |
| TP12_0.05_AS | SE139332.019 | LB077627 | 13 May 2015 | 15 May 2015 | 27 May 2015    | 20 May 2015 | 29 Jun 2015  | 22 May 2015 |
| TP12_0.5_AS  | SE139332.020 | LB077627 | 13 May 2015 | 15 May 2015 | 27 May 2015    | 20 May 2015 | 29 Jun 2015  | 22 May 2015 |

22/5/2015 Page 7 of 35





SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

#### Volatile Petroleum Hydrocarbons in Soil (continued)

#### Method: ME-(AU)-[ENV]AN433/AN434/AN410

| Sample Name  | Sample No.   | QC Ref   | Sampled     | Received    | Extraction Due | Extracted   | Analysis Due | Analysed    |
|--------------|--------------|----------|-------------|-------------|----------------|-------------|--------------|-------------|
| TP13_0.05_AS | SE139332.022 | LB077627 | 14 May 2015 | 15 May 2015 | 28 May 2015    | 20 May 2015 | 29 Jun 2015  | 22 May 2015 |
| TP14_0.5_AS  | SE139332.024 | LB077627 | 14 May 2015 | 15 May 2015 | 28 May 2015    | 20 May 2015 | 29 Jun 2015  | 22 May 2015 |
| TP15_0.5_AS  | SE139332.027 | LB077627 | 13 May 2015 | 15 May 2015 | 27 May 2015    | 20 May 2015 | 29 Jun 2015  | 22 May 2015 |
| TP15_1.0_AS  | SE139332.028 | LB077628 | 13 May 2015 | 15 May 2015 | 27 May 2015    | 20 May 2015 | 29 Jun 2015  | 22 May 2015 |
| Dup1_AS      | SE139332.033 | LB077628 | 13 May 2015 | 15 May 2015 | 27 May 2015    | 20 May 2015 | 29 Jun 2015  | 22 May 2015 |
| TS_AS        | SE139332,035 | LB077628 | 13 May 2015 | 15 May 2015 | 27 May 2015    | 20 May 2015 | 29 Jun 2015  | 22 May 2015 |
| TB_AS        | SE139332.036 | LB077628 | 13 May 2015 | 15 May 2015 | 27 May 2015    | 20 May 2015 | 29 Jun 2015  | 22 May 2015 |

#### Volatile Petroleum Hydrocarbons in Water

#### Method: ME-(AU)-[ENV]AN433/AN434/AN410

| Sample Name | Sample No.   | QC Ref   | Sampled     | Received    | Extraction Due | Extracted   | Analysis Due | Analysed    |
|-------------|--------------|----------|-------------|-------------|----------------|-------------|--------------|-------------|
| FB130515    | SE139332.031 | LB077578 | 13 May 2015 | 15 May 2015 | 20 May 2015    | 19 May 2015 | 28 Jun 2015  | 20 May 2015 |
| FB140515    | SE139332.032 | LB077578 | 14 May 2015 | 15 May 2015 | 21 May 2015    | 19 May 2015 | 28 Jun 2015  | 20 May 2015 |

22/5/2015 Page 8 of 35

Method: ME-(AU)-[ENV]AN400/AN420



# **SURROGATES**

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

#### OC Pesticides in Soil Method: ME-(AU)-[ENV]AN400/AN420

| Parameter                               | Sample Name  | Sample Number         | Units | Criteria  | Recovery % |
|-----------------------------------------|--------------|-----------------------|-------|-----------|------------|
| Tetrachloro-m-xylene (TCMX) (Surrogate) | TP01_0.05_AS | SE139332.001          | %     | 60 - 130% | 108        |
|                                         | TP02_0.5_AS  | SE139332.004          | %     | 60 - 130% | 107        |
|                                         | TP03_0_AS    | SE139332.005          | %     | 60 - 130% | 110        |
|                                         | TP04_0.05_AS | SE139332.006          | %     | 60 - 130% | 101        |
|                                         | TP05_0_AS    | SE139332.007          | %     | 60 - 130% | 103        |
|                                         | TP06_0.45_AS | SE139332.008          | %     | 60 - 130% | 109        |
|                                         | TP07_0.05_AS | SE139332.009          | %     | 60 - 130% | 97         |
|                                         | TP08_0.05_AS | SE139332.011          | %     | 60 - 130% | 95         |
|                                         | TP09_0.5_AS  | SE139332.013          | %     | 60 - 130% | 93         |
|                                         | TP10_0.05_AS | SE139332.016          | %     | 60 - 130% | 95         |
|                                         | TP11_0_AS    | SE139332.018          | %     | 60 - 130% | 101        |
|                                         | TP12_0.5_AS  | SE139332 <u>.</u> 020 | %     | 60 - 130% | 97         |
|                                         | TP13_0.05_AS | SE139332 <u>.</u> 022 | %     | 60 - 130% | 99         |
|                                         | TP14_0.5_AS  | SE139332 <u>.</u> 024 | %     | 60 - 130% | 96         |
|                                         | TP15_0.5_AS  | SE139332.027          | %     | 60 - 130% | 92         |
|                                         | Dup1_AS      | SE139332.033          | %     | 60 - 130% | 99         |

#### OC Pesticides in Water

| Parameter                               | Sample Name | Sample Number | Units | Criteria  | Recovery % |
|-----------------------------------------|-------------|---------------|-------|-----------|------------|
| Tetrachloro-m-xylene (TCMX) (Surrogate) | FB130515    | SE139332.031  | %     | 40 - 130% | 65         |
|                                         | FB140515    | SE139332.032  | %     | 40 - 130% | 70         |

# OP Pesticides in Soil Method: ME-(AU)-[ENV]AN400/AN420

|                              | 0 1 1        | 0 1 11 1      |       | 0.11      |            |
|------------------------------|--------------|---------------|-------|-----------|------------|
| Parameter                    | Sample Name  | Sample Number | Units | Criteria  | Recovery % |
| 2-fluorobiphenyl (Surrogate) | TP01_0.05_AS | SE139332,001  | %     | 60 - 130% | 92         |
|                              | TP02_0.5_AS  | SE139332.004  | %     | 60 - 130% | 96         |
|                              | TP03_0_AS    | SE139332.005  | %     | 60 - 130% | 100        |
|                              | TP04_0.05_AS | SE139332.006  | %     | 60 - 130% | 92         |
|                              | TP05_0_AS    | SE139332.007  | %     | 60 - 130% | 92         |
|                              | TP06_0.45_AS | SE139332.008  | %     | 60 - 130% | 102        |
|                              | TP07_0.05_AS | SE139332.009  | %     | 60 - 130% | 92         |
|                              | TP08_0.05_AS | SE139332.011  | %     | 60 - 130% | 96         |
|                              | TP09_0.5_AS  | SE139332.013  | %     | 60 - 130% | 96         |
|                              | TP10_0.05_AS | SE139332.016  | %     | 60 - 130% | 96         |
|                              | TP11_0_AS    | SE139332.018  | %     | 60 - 130% | 96         |
|                              | TP12_0.5_AS  | SE139332.020  | %     | 60 - 130% | 96         |
|                              | TP13_0.05_AS | SE139332.022  | %     | 60 - 130% | 102        |
|                              | TP14_0.5_AS  | SE139332.024  | %     | 60 - 130% | 102        |
|                              | TP15_0.5_AS  | SE139332.027  | %     | 60 - 130% | 96         |
|                              | Dup1_AS      | SE139332.033  | %     | 60 - 130% | 94         |
| d14-p-terphenyl (Surrogate)  | TP01_0.05_AS | SE139332,001  | %     | 60 - 130% | 110        |
|                              | TP02_0.5_AS  | SE139332.004  | %     | 60 - 130% | 102        |
|                              | TP03_0_AS    | SE139332,005  | %     | 60 - 130% | 110        |
|                              | TP04_0.05_AS | SE139332,006  | %     | 60 - 130% | 106        |
|                              | TP05_0_AS    | SE139332,007  | %     | 60 - 130% | 104        |
|                              | TP06_0.45_AS | SE139332.008  | %     | 60 - 130% | 116        |
|                              | TP07_0.05_AS | SE139332.009  | %     | 60 - 130% | 112        |
|                              | TP08_0.05_AS | SE139332.011  | %     | 60 - 130% | 106        |
|                              | TP09_0.5_AS  | SE139332.013  | %     | 60 - 130% | 110        |
|                              | TP10_0.05_AS | SE139332.016  | %     | 60 - 130% | 108        |
|                              | TP11_0_AS    | SE139332.018  | %     | 60 - 130% | 106        |
|                              | TP12_0.5_AS  | SE139332.020  | %     | 60 - 130% | 108        |
|                              | TP13_0.05_AS | SE139332.022  | %     | 60 - 130% | 114        |
|                              | TP14_0.5_AS  | SE139332.024  | %     | 60 - 130% | 114        |
|                              | TP15_0.5_AS  | SE139332.027  | %     | 60 - 130% | 108        |
|                              | Dup1_AS      | SE139332,033  | %     | 60 - 130% | 108        |

#### **OP Pesticides in Water**

#### Method: ME-(AU)-[ENV]AN400/AN420

| Parameter                    | Sample Name | Sample Number | Units | Criteria  | Recovery % |
|------------------------------|-------------|---------------|-------|-----------|------------|
| 2-fluorobiphenyl (Surrogate) | FB130515    | SE139332.031  | %     | 40 - 130% | 60         |
|                              | FB140515    | SE139332.032  | %     | 40 - 130% | 70         |
| d14-p-terphenyl (Surrogate)  | FB130515    | SE139332.031  | %     | 40 - 130% | 98         |

22/5/2015 Page 9 of 35



Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

| P Pesticides in Water (continued)              |                            |                              |               | Method: ME-(AU)-       | [ENV]AN400/AN4  |
|------------------------------------------------|----------------------------|------------------------------|---------------|------------------------|-----------------|
| Parameter                                      | Sample Name                | Sample Number                | Units         | Criteria               | Recovery %      |
| d14-p-terphenyl (Surrogate)                    | FB140515                   | SE139332.032                 | %             | 40 - 130%              | 100             |
| AH (Polynuclear Aromatic Hydrocarbons) in Soil |                            |                              |               | Method: M              | E-(AU)-[ENV]AN4 |
| Parameter                                      | Sample Name                | Sample Number                | Units         | Criteria               | Recovery %      |
| 2-fluorobiphenyl (Surrogate)                   | TP01_0.05_AS               | SE139332.001                 | %             | 70 - 130%              | 92              |
|                                                | TP02_0.5_AS                | SE139332.004                 | %             | 70 - 130%              | 96              |
|                                                | TP03_0_AS                  | SE139332.005                 | %             | 70 - 130%              | 100             |
|                                                | TP04_0.05_AS               | SE139332.006                 | %             | 70 - 130%              | 92              |
|                                                | TP05_0_AS                  | SE139332.007                 | %             | 70 - 130%              | 92              |
|                                                | TP06_0.45_AS               | SE139332.008                 | %             | 70 - 130%              | 102             |
|                                                | TP07_0.05_AS               | SE139332.009                 | %             | 70 - 130%              | 92              |
|                                                | TP07_0.5_AS                | SE139332.010                 | %             | 70 - 130%              | 96              |
|                                                | TP08_0.05_AS               | SE139332.011                 | %             | 70 - 130%              | 96              |
|                                                | TP09_0.5_AS                | SE139332.013                 | %             | 70 - 130%              | 96              |
|                                                | TP09_1.0_AS                | SE139332.014                 | %             | 70 - 130%              | 98              |
|                                                | TP09_2.1_AS                | SE139332.015                 | %             | 70 - 130%              | 94              |
|                                                | TP10_0.05_AS               | SE139332.016                 | %             | 70 - 130%              | 96              |
|                                                | TP10_0.5_AS<br>TP11_0_AS   | SE139332,017<br>SE139332,018 | <u>%</u><br>% | 70 - 130%<br>70 - 130% | 94              |
|                                                | TP11_0_AS<br>TP12_0.05_AS  | SE139332.019                 | %             | 70 - 130%              | 96              |
|                                                | TP12_0.05_AS               | SE139332.020                 | %<br>%        | 70 - 130%              | 96              |
|                                                | TP13_SP_AS                 | SE139332.021                 | %             | 70 - 130%              | 96              |
|                                                | TP13_0.05_AS               | SE139332.022                 | %             | 70 - 130%              | 102             |
|                                                | TP14_0.5_AS                | SE139332.024                 | %             | 70 - 130%              | 102             |
|                                                | TP14_1.0_AS                | SE139332.025                 | %             | 70 - 130%              | 96              |
|                                                | TP15_0.5_AS                | SE139332.027                 | %             | 70 - 130%              | 96              |
|                                                | TP15_1.0_AS                | SE139332.028                 | %             | 70 - 130%              | 90              |
|                                                | TP15_2.0_AS                | SE139332.029                 | %             | 70 - 130%              | 100             |
|                                                | TP15_2.9_AS                | SE139332.030                 | %             | 70 - 130%              | 90              |
|                                                | Dup1_AS                    | SE139332.033                 | %             | 70 - 130%              | 94              |
|                                                | Dup2_AS                    | SE139332.038                 | %             | 70 - 130%              | 96              |
| d14-p-terphenyl (Surrogate)                    | TP01_0.05_AS               | SE139332.001                 | %             | 70 - 130%              | 110             |
|                                                | TP02_0.5_AS                | SE139332.004                 | %             | 70 - 130%              | 102             |
|                                                | TP03_0_AS                  | SE139332.005                 | %             | 70 - 130%              | 110             |
|                                                | TP04_0.05_AS               | SE139332,006                 | %             | 70 - 130%              | 106             |
|                                                | TP05_0_AS                  | SE139332.007                 | %             | 70 - 130%              | 104             |
|                                                | TP06_0.45_AS               | SE139332.008                 | %             | 70 - 130%              | 116             |
|                                                | TP07_0.05_AS               | SE139332.009                 | %             | 70 - 130%              | 112             |
|                                                | TP07_0.5_AS                | SE139332.010                 | %             | 70 - 130%              | 106             |
|                                                | TP08_0.05_AS               | SE139332.011                 | %             | 70 - 130%              | 106             |
|                                                | TP09_0.5_AS                | SE139332.013                 | %             | 70 - 130%              | 110             |
|                                                | TP09_1.0_AS                | SE139332.014                 | %             | 70 - 130%              | 110             |
|                                                | TP09_2.1_AS                | SE139332.015                 | %             | 70 - 130%              | 108             |
|                                                | TP10_0.05_AS               | SE139332.016                 | %             | 70 - 130%              | 108             |
|                                                | TP10_0.5_AS                | SE139332.017                 | %             | 70 - 130%              | 108             |
|                                                | TP11_0_AS                  | SE139332.018                 | %             | 70 - 130%              | 106             |
|                                                | TP12_0.05_AS               | SE139332.019                 | %             | 70 - 130%              | 112             |
|                                                | TP12_0.5_AS                | SE139332.020                 | %             | 70 - 130%              | 108             |
|                                                | TP13_SP_AS                 | SE139332.021                 | %             | 70 - 130%              | 106             |
|                                                | TP11_0.05_AS               | SE139332.022                 | %             | 70 - 130%              | 114             |
|                                                | TP14_0.5_AS<br>TP14_1.0_AS | SE139332.024<br>SE139332.025 | <u>%</u>      | 70 - 130%<br>70 - 130% | 114<br>110      |
|                                                | TP14_1.0_AS<br>TP15_0.5_AS | SE139332.025<br>SE139332.027 |               | 70 - 130%              | 108             |
|                                                | TP15_0.3_AS                | SE139332.027                 | %             | 70 - 130%              | 102             |
|                                                | TP15_2.0_AS                | SE139332.029                 | %<br>%        | 70 - 130%              | 112             |
|                                                | TP15 2.9 AS                | SE139332.029                 | %<br>%        | 70 - 130%              | 104             |
|                                                | Dup1_AS                    | SE139332.033                 | %             | 70 - 130%              | 108             |
|                                                | Dup2_AS                    | SE139332.038                 | %             | 70 - 130%              | 108             |
| d5-nitrobenzene (Surrogate)                    | TP01_0.05_AS               | SE139332.001                 | %             | 70 - 130%              | 94              |
|                                                | TP02_0.5_AS                | SE139332.004                 | %             | 70 - 130%              | 94              |
|                                                | 11 02_0.0_0                | 10000Z.00T                   | 70            | . 0 10070              | U-T             |

22/5/2015 Page 10 of 35





Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

#### PAH (Polynuclear Aromatic Hydrocarbons) in Soil (continued)

# Method: ME-(AU)-[ENV]AN420

| Parameter                   | Sample Name  | Sample Number | Units | Criteria  | Recovery % |
|-----------------------------|--------------|---------------|-------|-----------|------------|
| d5-nitrobenzene (Surrogate) | TP04_0.05_AS | SE139332.006  | %     | 70 - 130% | 96         |
|                             | TP05_0_AS    | SE139332.007  | %     | 70 - 130% | 96         |
|                             | TP06_0.45_AS | SE139332.008  | %     | 70 - 130% | 102        |
|                             | TP07_0.05_AS | SE139332.009  | %     | 70 - 130% | 98         |
|                             | TP07_0.5_AS  | SE139332.010  | %     | 70 - 130% | 98         |
|                             | TP08_0.05_AS | SE139332.011  | %     | 70 - 130% | 102        |
|                             | TP09_0.5_AS  | SE139332.013  | %     | 70 - 130% | 100        |
|                             | TP09_1.0_AS  | SE139332.014  | %     | 70 - 130% | 106        |
|                             | TP09_2.1_AS  | SE139332.015  | %     | 70 - 130% | 102        |
|                             | TP10_0.05_AS | SE139332,016  | %     | 70 - 130% | 100        |
|                             | TP10_0.5_AS  | SE139332,017  | %     | 70 - 130% | 100        |
|                             | TP11_0_AS    | SE139332,018  | %     | 70 - 130% | 100        |
|                             | TP12_0.05_AS | SE139332.019  | %     | 70 - 130% | 102        |
|                             | TP12_0.5_AS  | SE139332,020  | %     | 70 - 130% | 98         |
|                             | TP13_SP_AS   | SE139332.021  | %     | 70 - 130% | 100        |
|                             | TP13_0.05_AS | SE139332.022  | %     | 70 - 130% | 108        |
|                             | TP14_0.5_AS  | SE139332.024  | %     | 70 - 130% | 112        |
|                             | TP14_1.0_AS  | SE139332.025  | %     | 70 - 130% | 96         |
|                             | TP15_0.5_AS  | SE139332.027  | %     | 70 - 130% | 92         |
|                             | TP15_1.0_AS  | SE139332.028  | %     | 70 - 130% | 94         |
|                             | TP15_2.0_AS  | SE139332.029  | %     | 70 - 130% | 102        |
|                             | TP15_2.9_AS  | SE139332.030  | %     | 70 - 130% | 92         |
|                             | Dup1_AS      | SE139332.033  | %     | 70 - 130% | 92         |
|                             | Dup2_AS      | SE139332.038  | %     | 70 - 130% | 96         |
|                             |              |               |       |           |            |

#### PAH (Polynuclear Aromatic Hydrocarbons) in Water

# Method: ME-(AU)-[ENV]AN420

| Parameter                    | Sample Name | Sample Number | Units | Criteria  | Recovery % |
|------------------------------|-------------|---------------|-------|-----------|------------|
| 2-fluorobiphenyl (Surrogate) | FB130515    | SE139332.031  | %     | 40 - 130% | 60         |
|                              | FB140515    | SE139332.032  | %     | 40 - 130% | 70         |
| d14-p-terphenyl (Surrogate)  | FB130515    | SE139332.031  | %     | 40 - 130% | 98         |
|                              | FB140515    | SE139332.032  | %     | 40 - 130% | 100        |
| d5-nitrobenzene (Surrogate)  | FB130515    | SE139332.031  | %     | 40 - 130% | 58         |
|                              | FB140515    | SE139332,032  | %     | 40 - 130% | 66         |

#### PCBs in Soil

# Method: ME-(AU)-[ENV]AN400/AN420

| Parameter                               | Sample Name  | Sample Number | Units | Criteria  | Recovery % |
|-----------------------------------------|--------------|---------------|-------|-----------|------------|
| Tetrachloro-m-xylene (TCMX) (Surrogate) | TP01_0.05_AS | SE139332.001  | %     | 60 - 130% | 108        |
|                                         | TP02_0.5_AS  | SE139332.004  | %     | 60 - 130% | 107        |
|                                         | TP03_0_AS    | SE139332.005  | %     | 60 - 130% | 110        |
|                                         | TP04_0.05_AS | SE139332,006  | %     | 60 - 130% | 101        |
|                                         | TP05_0_AS    | SE139332,007  | %     | 60 - 130% | 103        |
|                                         | TP06_0.45_AS | SE139332,008  | %     | 60 - 130% | 109        |
|                                         | TP07_0.05_AS | SE139332,009  | %     | 60 - 130% | 97         |
|                                         | TP08_0.05_AS | SE139332.011  | %     | 60 - 130% | 95         |
|                                         | TP09_0.5_AS  | SE139332.013  | %     | 60 - 130% | 93         |
|                                         | TP10_0.05_AS | SE139332.016  | %     | 60 - 130% | 95         |
|                                         | TP11_0_AS    | SE139332.018  | %     | 60 - 130% | 101        |
|                                         | TP12_0.5_AS  | SE139332.020  | %     | 60 - 130% | 97         |
|                                         | TP13_0.05_AS | SE139332.022  | %     | 60 - 130% | 99         |
|                                         | TP14_0.5_AS  | SE139332.024  | %     | 60 - 130% | 96         |
|                                         | TP15_0.5_AS  | SE139332.027  | %     | 60 - 130% | 92         |
|                                         | Dup1_AS      | SE139332.033  | %     | 60 - 130% | 99         |

# PCBs in Water

# Method: ME-(AU)-[ENV]AN400/AN420

| Parameter                        | Sample Name | Sample Number | Units | Criteria  | Recovery % |
|----------------------------------|-------------|---------------|-------|-----------|------------|
| Tetrachloro-m-xylene (Surrogate) | FB130515    | SE139332.031  | %     | 40 - 130% | 65         |
|                                  | EP140515    | CE130333 033  | 0/.   | 40 1200/  | 70         |

# VOC's in Soil

# Method: ME-(AU)-[ENV]AN433/AN434

|                                |              |               |       |           | = =        |
|--------------------------------|--------------|---------------|-------|-----------|------------|
| Parameter                      | Sample Name  | Sample Number | Units | Criteria  | Recovery % |
| Bromofluorobenzene (Surrogate) | TP01_0.05_AS | SE139332.001  | %     | 60 - 130% | 100        |
|                                | TP02 0.5 AS  | SE139332.004  | %     | 60 - 130% | 106        |

22/5/2015 Page 11 of 35



Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

# VOC's in Soil (continued) Method: ME-(AU)-[ENV]AN433/AN434

| OC's in Soil (continued)         |              |                       |       | Method: ME-(AU)- | ILIAA IVI A-1001VIA |
|----------------------------------|--------------|-----------------------|-------|------------------|---------------------|
| Parameter                        | Sample Name  | Sample Number         | Units | Criteria         | Recovery %          |
| Bromofluorobenzene (Surrogate)   | TP03_0_AS    | SE139332.005          | %     | 60 - 130%        | 97                  |
|                                  | TP04_0.05_AS | SE139332.006          | %     | 60 - 130%        | 101                 |
|                                  | TP05_0_AS    | SE139332.007          | %     | 60 - 130%        | 98                  |
|                                  | TP06_0.45_AS | SE139332.008          | %     | 60 - 130%        | 90                  |
|                                  | TP07_0.05_AS | SE139332.009          | %     | 60 - 130%        | 92                  |
|                                  | TP08_0.05_AS | SE139332.011          | %     | 60 - 130%        | 75                  |
|                                  | TP09_0.5_AS  | SE139332.013          | %     | 60 - 130%        | 77                  |
|                                  | TP09_1.0_AS  | SE139332.014          | %     | 60 - 130%        | 79                  |
|                                  | TP10_0.05_AS | SE139332.016          | %     | 60 - 130%        | 114                 |
|                                  | TP11_0_AS    | SE139332,018          |       | 60 - 130%        | 102                 |
|                                  |              | SE139332,019          |       | 60 - 130%        | 125                 |
|                                  | TP12_0.05_AS |                       |       |                  |                     |
|                                  | TP12_0.5_AS  | SE139332,020          | %     | 60 - 130%        | 107                 |
|                                  | TP13_0.05_AS | SE139332,022          | %     | 60 - 130%        | 122                 |
|                                  | TP14_0.5_AS  | SE139332.024          | %     | 60 - 130%        | 97                  |
|                                  | TP15_0.5_AS  | SE139332.027          | %     | 60 - 130%        | 108                 |
|                                  | TP15_1.0_AS  | SE139332.028          | %     | 60 - 130%        | 80                  |
|                                  | Dup1_AS      | SE139332.033          | %     | 60 - 130%        | 90                  |
|                                  | TS_AS        | SE139332.035          | %     | 60 - 130%        | 121                 |
|                                  | TB_AS        | SE139332.036          | %     | 60 - 130%        | 121                 |
| 4-1,2-dichloroethane (Surrogate) | TP01_0.05_AS | SE139332.001          | %     | 60 - 130%        | 107                 |
|                                  | TP02_0.5_AS  | SE139332.004          | %     | 60 - 130%        | 112                 |
|                                  | TP03_0_AS    | SE139332.005          | %     | 60 - 130%        | 117                 |
|                                  | TP04_0.05_AS | SE139332.006          | %     | 60 - 130%        | 102                 |
|                                  | TP05_0_AS    | SE139332.007          | %     | 60 - 130%        | 108                 |
|                                  | TP06_0.45_AS | SE139332.008          | %     | 60 - 130%        | 94                  |
|                                  | TP07_0.05_AS | SE139332,000          | %     | 60 - 130%        | 97                  |
|                                  |              |                       |       |                  | 118                 |
|                                  | TP08_0.05_AS | SE139332.011          | %     | 60 - 130%        |                     |
|                                  | TP09_0.5_AS  | SE139332.013          | %     | 60 - 130%        | 102                 |
|                                  | TP09_1.0_AS  | SE139332.014          | %     | 60 - 130%        | 80                  |
|                                  | TP10_0.05_AS | SE139332.016          | %     | 60 - 130%        | 113                 |
|                                  | TP11_0_AS    | SE139332.018          | - %   | 60 - 130%        | 97                  |
|                                  | TP12_0.05_AS | SE139332.019          | %     | 60 - 130%        | 113                 |
|                                  | TP12_0.5_AS  | SE139332.020          | %     | 60 - 130%        | 103                 |
|                                  | TP13_0.05_AS | SE139332.022          | %     | 60 - 130%        | 112                 |
|                                  | TP14_0.5_AS  | SE139332.024          | %     | 60 - 130%        | 94                  |
|                                  | TP15_0.5_AS  | SE139332.027          | %     | 60 - 130%        | 99                  |
|                                  | TP15_1.0_AS  | SE139332.028          | %     | 60 - 130%        | 85                  |
|                                  | Dup1_AS      | SE139332.033          | %     | 60 - 130%        | 80                  |
|                                  | TS_AS        | SE139332.035          | %     | 60 - 130%        | 96                  |
|                                  | TB_AS        | SE139332.036          | %     | 60 - 130%        | 108                 |
| 3-toluene (Surrogate)            | TP01_0.05_AS | SE139332.001          | %     | 60 - 130%        | 92                  |
| Floruette (Surrogate)            |              |                       |       |                  |                     |
|                                  | TP02_0.5_AS  | SE139332.004          | %     | 60 - 130%        | 82                  |
|                                  | TP03_0_AS    | SE139332.005          | %     | 60 - 130%        | 99                  |
|                                  | TP04_0.05_AS | SE139332.006          | %     | 60 - 130%        | 84                  |
|                                  | TP05_0_AS    | SE139332.007          | %     | 60 - 130%        | 92                  |
|                                  | TP06_0.45_AS | SE139332,008          | %     | 60 - 130%        | 87                  |
|                                  | TP07_0.05_AS | SE139332,009          | %     | 60 - 130%        | 87                  |
|                                  | TP08_0.05_AS | SE139332 <u>.</u> 011 | %     | 60 - 130%        | 94                  |
|                                  | TP09_0.5_AS  | SE139332.013          | %     | 60 - 130%        | 87                  |
|                                  | TP09_1.0_AS  | SE139332.014          | %     | 60 - 130%        | 82                  |
|                                  | TP10_0.05_AS | SE139332.016          | %     | 60 - 130%        | 128                 |
|                                  | TP11_0_AS    | SE139332.018          | %     | 60 - 130%        | 109                 |
|                                  | TP12_0.05_AS | SE139332.019          | %     | 60 - 130%        | 121                 |
|                                  | TP12_0.5_AS  | SE139332.020          | %     | 60 - 130%        | 114                 |
|                                  | TP13_0.05_AS | SE139332.020          |       | 60 - 130%        | 120                 |
|                                  |              |                       |       |                  |                     |
|                                  | TP14_0.5_AS  | SE139332.024          | %     | 60 - 130%        | 106                 |
|                                  | TP15_0.5_AS  | SE139332.027          | %     | 60 - 130%        | 110                 |
|                                  | TP15_1.0_AS  | SE139332.028          | %     | 60 - 130%        | 90                  |
|                                  | Dup1_AS      | SE139332.033          | %     | 60 - 130%        | 91                  |
|                                  | TS_AS        | SE139332.035          | %     | 60 - 130%        | 114                 |
|                                  | TB_AS        | SE139332.036          | %     | 60 - 130%        | 124                 |

22/5/2015 Page 12 of 35



Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

#### VOC's in Soil (continued) Method: ME-(AU)-[ENV]AN433/AN434

| Parameter                        | Sample Name  | Sample Number | Units | Criteria  | Recovery % |
|----------------------------------|--------------|---------------|-------|-----------|------------|
| Dibromofluoromethane (Surrogate) | TP01_0.05_AS | SE139332.001  | %     | 60 - 130% | 88         |
|                                  | TP02_0.5_AS  | SE139332.004  | %     | 60 - 130% | 92         |
|                                  | TP03_0_AS    | SE139332.005  | %     | 60 - 130% | 97         |
|                                  | TP04_0.05_AS | SE139332.006  | %     | 60 - 130% | 78         |
|                                  | TP05_0_AS    | SE139332.007  | %     | 60 - 130% | 105        |
|                                  | TP06_0.45_AS | SE139332.008  | %     | 60 - 130% | 77         |
|                                  | TP07_0.05_AS | SE139332.009  | %     | 60 - 130% | 77         |
|                                  | TP08_0.05_AS | SE139332.011  | %     | 60 - 130% | 89         |
|                                  | TP09_0.5_AS  | SE139332.013  | %     | 60 - 130% | 82         |
|                                  | TP09_1.0_AS  | SE139332.014  | %     | 60 - 130% | 70         |
|                                  | TP10_0.05_AS | SE139332.016  | %     | 60 - 130% | 101        |
|                                  | TP11_0_AS    | SE139332,018  | %     | 60 - 130% | 83         |
|                                  | TP12_0.05_AS | SE139332,019  | %     | 60 - 130% | 98         |
|                                  | TP12_0.5_AS  | SE139332.020  | %     | 60 - 130% | 87         |
|                                  | TP13_0.05_AS | SE139332.022  | %     | 60 - 130% | 98         |
|                                  | TP14_0.5_AS  | SE139332.024  | %     | 60 - 130% | 82         |
|                                  | TP15_0.5_AS  | SE139332.027  | %     | 60 - 130% | 84         |
|                                  | TP15_1.0_AS  | SE139332.028  | %     | 60 - 130% | 71         |
|                                  | Dup1_AS      | SE139332.033  | %     | 60 - 130% | 70         |
|                                  | TS_AS        | SE139332.035  | %     | 60 - 130% | 80         |
|                                  | TB_AS        | SE139332.036  | %     | 60 - 130% | 92         |

#### VOCs in Water Method: ME-(AU)-[ENV]AN433/AN434

| Parameter                         | Sample Name | Sample Number | Units | Criteria  | Recovery % |
|-----------------------------------|-------------|---------------|-------|-----------|------------|
| Bromofluorobenzene (Surrogate)    | FB130515    | SE139332.031  | %     | 40 - 130% | 91         |
|                                   | FB140515    | SE139332.032  | %     | 40 - 130% | 89         |
| d4-1,2-dichloroethane (Surrogate) | FB130515    | SE139332.031  | %     | 40 - 130% | 101        |
|                                   | FB140515    | SE139332.032  | %     | 40 - 130% | 99         |
| d8-toluene (Surrogate)            | FB130515    | SE139332.031  | %     | 40 - 130% | 102        |
|                                   | FB140515    | SE139332.032  | %     | 40 - 130% | 98         |
| Dibromofluoromethane (Surrogate)  | FB130515    | SE139332.031  | %     | 40 - 130% | 99         |
|                                   | FB140515    | SE139332.032  | %     | 40 - 130% | 96         |

# Volatile Petroleum Hydrocarbons in Soil Parameter

# Method: ME-(AU)-[ENV]AN433/AN434/AN410 Units Criteria Recovery %

| Parameter                         | Sample Name  | Sample Number         | Units | Criteria  | Recovery % |
|-----------------------------------|--------------|-----------------------|-------|-----------|------------|
| Bromofluorobenzene (Surrogate)    | TP01_0.05_AS | SE139332.001          | %     | 60 - 130% | 100        |
|                                   | TP02_0.5_AS  | SE139332.004          | %     | 60 - 130% | 106        |
|                                   | TP03_0_AS    | SE139332.005          | %     | 60 - 130% | 97         |
|                                   | TP04_0.05_AS | SE139332.006          | %     | 60 - 130% | 101        |
|                                   | TP05_0_AS    | SE139332,007          | %     | 60 - 130% | 98         |
|                                   | TP06_0.45_AS | SE139332,008          | %     | 60 - 130% | 90         |
|                                   | TP07_0.05_AS | SE139332,009          | %     | 60 - 130% | 92         |
|                                   | TP08_0.05_AS | SE139332.011          | %     | 60 - 130% | 75         |
|                                   | TP09_0.5_AS  | SE139332 <u>.</u> 013 | %     | 60 - 130% | 77         |
|                                   | TP09_1.0_AS  | SE139332.014          | %     | 60 - 130% | 79         |
|                                   | TP10_0.05_AS | SE139332.016          | %     | 60 - 130% | 114        |
|                                   | TP11_0_AS    | SE139332.018          | %     | 60 - 130% | 102        |
|                                   | TP12_0.05_AS | SE139332.019          | %     | 60 - 130% | 125        |
|                                   | TP12_0.5_AS  | SE139332.020          | %     | 60 - 130% | 107        |
|                                   | TP13_0.05_AS | SE139332.022          | %     | 60 - 130% | 122        |
|                                   | TP14_0.5_AS  | SE139332.024          | %     | 60 - 130% | 97         |
|                                   | TP15_0.5_AS  | SE139332.027          | %     | 60 - 130% | 108        |
|                                   | TP15_1.0_AS  | SE139332.028          | %     | 60 - 130% | 80         |
|                                   | Dup1_AS      | SE139332.033          | %     | 60 - 130% | 90         |
|                                   | TB_AS        | SE139332.036          | %     | 60 - 130% | 121        |
| d4-1,2-dichloroethane (Surrogate) | TP01_0.05_AS | SE139332.001          | %     | 60 - 130% | 107        |
|                                   | TP02_0.5_AS  | SE139332.004          | %     | 60 - 130% | 112        |
|                                   | TP03_0_AS    | SE139332.005          | %     | 60 - 130% | 117        |
|                                   | TP04_0.05_AS | SE139332.006          | %     | 60 - 130% | 102        |
|                                   | TP05_0_AS    | SE139332.007          | %     | 60 - 130% | 108        |
|                                   | TP06_0.45_AS | SE139332.008          | %     | 60 - 130% | 94         |
|                                   | TP07_0.05_AS | SE139332.009          | %     | 60 - 130% | 97         |
|                                   |              |                       |       |           |            |

22/5/2015 Page 13 of 35





Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

#### Volatile Petroleum Hydrocarbons in Soil (continued)

# Method: ME-(AU)-[ENV]AN433/AN434/AN410

| arameter                          | Sample Name                       | Sample Number                | Units  | Criteria               | Recovery % |
|-----------------------------------|-----------------------------------|------------------------------|--------|------------------------|------------|
| 14-1,2-dichloroethane (Surrogate) | TP08_0.05_AS                      | SE139332.011                 | %      | 60 - 130%              | 118        |
| 44-1,2-dichioroethane (Surrogate) | TP09_0.5_AS                       | SE139332.011                 | %      | 60 - 130%              | 102        |
|                                   | TP09_1.0_AS                       | SE139332.014                 | %      | 60 - 130%              | 80         |
|                                   | TP10_0.05_AS                      | SE139332.014                 | %      | 60 - 130%              | 113        |
|                                   | TP11_0_AS                         | SE139332.018                 | %      | 60 - 130%              | 97         |
|                                   | TP12_0.05_AS                      | SE139332.019                 | %      | 60 - 130%              | 113        |
|                                   | TP12_0.05_AS                      | SE139332.019<br>SE139332.020 |        | 60 - 130%              | 103        |
|                                   | TP13_0.05_AS                      | SE139332.020<br>SE139332.022 | %      | 60 - 130%              | 112        |
|                                   |                                   |                              | %      |                        | 94         |
|                                   | TP14_0.5_AS                       | SE139332.024                 | %<br>% | 60 - 130%              |            |
|                                   | TP15_0.5_AS                       | SE139332.027<br>SE139332.028 |        | 60 - 130%<br>60 - 130% | 99<br>85   |
|                                   | TP15_1.0_AS                       |                              | %      |                        |            |
|                                   | Dup1_AS                           | SE139332,033                 | %      | 60 - 130%              | 80         |
| 10.11(0                           | TB_AS                             | SE139332,036                 | %      | 60 - 130%              | 108        |
| 18-toluene (Surrogate)            | TP01_0.05_AS                      | SE139332,001                 | %      | 60 - 130%              | 92         |
|                                   | TP02_0.5_AS                       | SE139332.004                 | %      | 60 - 130%              | 82         |
|                                   | TP03_0_AS                         | SE139332.005                 | %      | 60 - 130%              | 99         |
|                                   | TP04_0.05_AS                      | SE139332.006                 | %      | 60 - 130%              | 84         |
|                                   | TP05_0_AS                         | SE139332.007                 | %      | 60 - 130%              | 92         |
|                                   | TP06_0.45_AS                      | SE139332.008                 | %      | 60 - 130%              | 87         |
|                                   | TP07_0.05_AS                      | SE139332.009                 | %      | 60 - 130%              | 87         |
|                                   | TP08_0.05_AS                      | SE139332.011                 | %      | 60 - 130%              | 94         |
|                                   | TP09_0.5_AS                       | SE139332.013                 | %      | 60 - 130%              | 87         |
|                                   | TP09_1.0_AS                       | SE139332.014                 | %      | 60 - 130%              | 82         |
|                                   | TP10_0.05_AS                      | SE139332.016                 |        | 60 - 130%              | 128        |
|                                   | TP11_0_AS                         | SE139332.018                 |        | 60 - 130%              | 109        |
|                                   | TP12_0.05_AS                      | SE139332.019                 | %      | 60 - 130%              | 121        |
|                                   | TP12_0.5_AS                       | SE139332.020                 | %      | 60 - 130%              | 114        |
|                                   | TP13_0.05_AS                      | SE139332.022                 | %      | 60 - 130%              | 120        |
|                                   | TP14_0.5_AS                       | SE139332.024                 | %      | 60 - 130%              | 106        |
|                                   | TP15_0.5_AS                       | SE139332.027                 | %      | 60 - 130%              | 110        |
|                                   | TP15_1.0_AS                       | SE139332.028                 | %      | 60 - 130%              | 90         |
|                                   | Dup1_AS                           | SE139332.033                 | %      | 60 - 130%              | 91         |
|                                   | TB_AS                             | SE139332.036                 | %      | 60 - 130%              | 124        |
| Dibromofluoromethane (Surrogate)  | TP01_0.05_AS                      | SE139332.001                 | %      | 60 - 130%              | 88         |
|                                   | TP02_0.5_AS                       | SE139332.004                 | %      | 60 - 130%              | 92         |
|                                   | TP03_0_AS                         | SE139332.005                 | %      | 60 - 130%              | 97         |
|                                   | TP04_0.05_AS                      | SE139332.006                 | %      | 60 - 130%              | 78         |
|                                   | TP05 0 AS                         | SE139332.007                 | %      | 60 - 130%              | 105        |
|                                   | TP06_0.45_AS                      | SE139332.008                 | %      | 60 - 130%              | 77         |
|                                   | TP07_0.05_AS                      | SE139332.009                 | %      | 60 - 130%              | 77         |
|                                   | TP08_0.05_AS                      | SE139332.011                 | %      | 60 - 130%              | 89         |
|                                   | TP09_0.5_AS                       | SE139332.013                 | %      | 60 - 130%              | 82         |
|                                   | TP09_1.0_AS                       | SE139332.014                 | %      | 60 - 130%              | 70         |
|                                   | TP10_0.05_AS                      | SE139332.016                 | %      | 60 - 130%              | 101        |
|                                   | TP11_0_AS                         | SE139332.018                 | %      | 60 - 130%              | 83         |
|                                   | TP12_0.05_AS                      | SE139332.019                 | %      | 60 - 130%              | 98         |
|                                   | TP12_0.5_AS                       | SE139332,020                 | %      | 60 - 130%              | 87         |
|                                   | TP13_0.05_AS                      | SE139332,022                 | %      | 60 - 130%              | 98         |
|                                   | TP14_0.5_AS                       | SE139332.024                 | %      | 60 - 130%              | 82         |
|                                   |                                   | SE139332.024                 | %      | 60 - 130%              | 84         |
|                                   |                                   |                              |        |                        |            |
|                                   | TP15_0.5_AS                       |                              |        |                        |            |
|                                   | TP15_0.5_AS  TP15_1.0_AS  Dup1_AS | SE139332.028<br>SE139332.033 | %<br>% | 60 - 130%<br>60 - 130% | 71         |

#### Volatile Petroleum Hydrocarbons in Water

# Method: ME-(AU)-[ENV]AN433/AN434/AN410

| Parameter                         | Sample Name | Sample Number | Units | Criteria  | Recovery % |
|-----------------------------------|-------------|---------------|-------|-----------|------------|
| Bromofluorobenzene (Surrogate)    | FB130515    | SE139332.031  | %     | 40 - 130% | 91         |
|                                   | FB140515    | SE139332.032  | %     | 40 - 130% | 89         |
| d4-1,2-dichloroethane (Surrogate) | FB130515    | SE139332.031  | %     | 60 - 130% | 101        |
|                                   | FB140515    | SE139332.032  | %     | 60 - 130% | 99         |
| d8-toluene (Surrogate)            | FB130515    | SE139332.031  | %     | 40 - 130% | 102        |

22/5/2015 Page 14 of 35



SE139332 R0

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

#### Volatile Petroleum Hydrocarbons in Water (continued)

#### Method: ME-(AU)-[ENV]AN433/AN434/AN410

| Parameter                        | Sample Name | Sample Number | Units | Criteria  | Recovery % |
|----------------------------------|-------------|---------------|-------|-----------|------------|
| d8-toluene (Surrogate)           | FB140515    | SE139332.032  | %     | 40 - 130% | 98         |
| Dibromofluoromethane (Surrogate) | FB130515    | SE139332.031  | %     | 40 - 130% | 99         |
|                                  | FB140515    | SE139332.032  | %     | 40 - 130% | 96         |

22/5/2015 Page 15 of 35





Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Mercury

Mercury

Heptachlor epoxide

Alpha Endosulfan

Gamma Chlordane

Alpha Chlordane

Beta Endosulfan

Endosulfan sulphate

Endrin Aldehyde

Methoxychlor

p,p'-DDE

Dieldrin

Endrin

p,p'-DDD

p,p'-DDT

#### Exchangeable Cations and Cation Exchange Capacity (CEC/ESP/SAR)

Method: ME-(AU)-[ENV]AN122

| Sample Number | Parameter | Units | LOR |
|---------------|-----------|-------|-----|
|               |           |       |     |

#### Mercury (dissolved) in Water

Method: ME-(AU)-[ENV]AN311/AN312

| Sample Number | Parameter | Units | LOR    | Result  |
|---------------|-----------|-------|--------|---------|
| LB077728.001  | Mercury   | mg/L  | 0.0001 | <0.0001 |

# Mercury in Soil Sample Number LB077666.001

LB077667.001

# Method: ME-(AU)-[ENV]AN312 Result

<0.01

< 0.01

0.01

0.01

0.1

0.2

0.1

0.1

0.1

0.2

0.2

0.2

0.1

0.1

0.1

0.1

mg/kg

<0.1

<0.2

< 0.1

<0.1

<0.1

<0.2

<0.2

<0.2

< 0.1

<0.1

<0.1

<0.1

mg/kg

mg/kg

| LB077007.001          |            | Mercury                                 | IIIg/kg | 0.01        | <b>~0.01</b>       |
|-----------------------|------------|-----------------------------------------|---------|-------------|--------------------|
| LB077668.001          |            | Mercury                                 | mg/kg   | 0.01        | <0.01              |
| OC Pesticides in Soil |            |                                         |         | Method: ME- | (AU)-[ENV]AN400/AN |
| Sample Number         |            | Parameter                               | Units   | LOR         | Result             |
| LB077544.001          |            | Hexachlorobenzene (HCB)                 | mg/kg   | 0.1         | <0.1               |
|                       |            | Alpha BHC                               | mg/kg   | 0.1         | <0.1               |
|                       |            | Lindane                                 | mg/kg   | 0.1         | <0.1               |
|                       |            | Heptachlor                              | mg/kg   | 0.1         | <0.1               |
|                       |            | Aldrin                                  | mg/kg   | 0.1         | <0.1               |
|                       |            | Beta BHC                                | mg/kg   | 0.1         | <0.1               |
|                       |            | Delta BHC                               | mg/kg   | 0.1         | <0.1               |
|                       |            | Heptachlor epoxide                      | mg/kg   | 0.1         | <0.1               |
|                       |            | Alpha Endosulfan                        | mg/kg   | 0.2         | <0.2               |
|                       |            | Gamma Chlordane                         | mg/kg   | 0.1         | <0.1               |
|                       |            | Alpha Chlordane                         | mg/kg   | 0.1         | <0.1               |
|                       |            | p,p'-DDE                                | mg/kg   | 0.1         | <0.1               |
|                       |            | Dieldrin                                | mg/kg   | 0.2         | <0.2               |
|                       |            | Endrin                                  | mg/kg   | 0.2         | <0.2               |
|                       |            | Beta Endosulfan                         | mg/kg   | 0,2         | <0.2               |
|                       |            | p,p'-DDD                                | mg/kg   | 0.1         | <0.1               |
|                       |            | p,p'-DDT                                | mg/kg   | 0.1         | <0.1               |
|                       |            | Endosulfan sulphate                     | mg/kg   | 0.1         | <0.1               |
|                       |            | Endrin Aldehyde                         | mg/kg   | 0.1         | <0.1               |
|                       |            | Methoxychlor                            | mg/kg   | 0.1         | <0.1               |
|                       |            | Endrin Ketone                           | mg/kg   | 0.1         | <0.1               |
|                       |            | Isodrin                                 | mg/kg   | 0.1         | <0.1               |
|                       |            | Mirex                                   | mg/kg   | 0.1         | <0.1               |
|                       | Surrogates | Tetrachloro-m-xylene (TCMX) (Surrogate) | %       | -           | 95                 |
| _B077546.001          |            | Hexachlorobenzene (HCB)                 | mg/kg   | 0.1         | <0.1               |
|                       |            | Alpha BHC                               | mg/kg   | 0.1         | <0.1               |
|                       |            | Lindane                                 | mg/kg   | 0.1         | <0.1               |
|                       |            | Heptachlor                              | mg/kg   | 0.1         | <0.1               |
|                       |            | Aldrin                                  | mg/kg   | 0.1         | <0.1               |
|                       |            | Beta BHC                                | mg/kg   | 0.1         | <0.1               |
|                       |            | Delta BHC                               | mg/kg   | 0.1         | <0.1               |
|                       |            |                                         |         |             |                    |

22/5/2015 Page 16 of 35



Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

| ample Number<br>8077546.001 | Parameter                               |       |              | Daniel Control  |
|-----------------------------|-----------------------------------------|-------|--------------|-----------------|
| 3077546.001                 |                                         | Units | LOR          | Result          |
|                             | Endrin Ketone                           | mg/kg | 0.1          | <0.1            |
|                             | Isodrin                                 | mg/kg | 0.1          | <0.1            |
|                             | Mirex                                   | mg/kg | 0.1          | <0.1            |
| Surrogates                  | Tetrachloro-m-xylene (TCMX) (Surrogate) | %     | -            | 75              |
| Pesticides in Water         |                                         |       | Method: ME-( | (AU)-[ENV]AN400 |
| ample Number                | Parameter                               | Units | LOR          | Result          |
| 3077619.001                 | Alpha BHC                               | μg/L  | 0.1          | <0.1            |
|                             | Hexachlorobenzene (HCB)                 | μg/L  | 0.1          | <0.1            |
|                             | Beta BHC                                | μg/L  | 0.1          | <0.1            |
|                             | Lindane (gamma BHC)                     | μg/L  | 0.1          | <0.1            |
|                             | Delta BHC                               | μg/L  | 0.1          | <0.1            |
|                             | Heptachlor                              | μg/L  | 0.1          | <0.1            |
|                             | Aldrin                                  | μg/L  | 0.1          | <0.1            |
|                             | Heptachlor epoxide                      | μg/L  | 0.1          | <0.1            |
|                             | Gamma Chlordane                         | μg/L  | 0.1          | <0.1            |
|                             | Alpha Chlordane                         | μg/L  | 0.1          | <0.1            |
|                             | Alpha Endosulfan                        | μg/L  | 0.1          | <0.1            |
|                             | p,p'-DDE                                | μg/L  | 0.1          | <0.1            |
|                             | Dieldrin                                | μg/L  | 0.1          | <0.1            |
|                             | Endrin                                  | μg/L  | 0.1          | <0.1            |
|                             | Beta Endosulfan                         | μg/L  | 0.1          | <0.1            |
|                             | p,p'-DDD                                | μg/L  | 0.1          | <0.1            |
|                             | Endosulfan sulphate                     | μg/L  | 0.1          | <0.1            |
|                             | p,p'-DDT                                | μg/L  | 0.1          | <0.1            |
|                             | Endrin ketone                           | μg/L  | 0.1          | <0.1            |
|                             | Methoxychlor                            | μg/L  | 0.1          | <0.1            |
|                             | Endrin aldehyde                         | μg/L  | 0.1          | <0.1            |
|                             | Isodrin                                 | μg/L  | 0.1          | <0.1            |
|                             | Mirex                                   | μg/L  | 0.1          | <0.1            |

# OP Pesticides in Soil Method: ME-(AU)-[ENV]AN400/AN420 Sample Number Parameter LOR Result

| Sample Number |            | Parameter                         | Units | LOR | Result |
|---------------|------------|-----------------------------------|-------|-----|--------|
| LB077544.001  |            | Dichlorvos                        | mg/kg | 0.5 | <0.5   |
|               |            | Dimethoate                        | mg/kg | 0.5 | <0.5   |
|               |            | Diazinon (Dimpylate)              | mg/kg | 0.5 | <0.5   |
|               |            | Fenitrothion                      | mg/kg | 0.2 | <0.2   |
|               |            | Malathion                         | mg/kg | 0.2 | <0.2   |
|               |            | Chlorpyrifos (Chlorpyrifos Ethyl) | mg/kg | 0.2 | <0.2   |
|               |            | Parathion-ethyl (Parathion)       | mg/kg | 0.2 | <0.2   |
|               |            | Bromophos Ethyl                   | mg/kg | 0.2 | <0.2   |
|               |            | Methidathion                      | mg/kg | 0.5 | <0.5   |
|               |            | Ethion                            | mg/kg | 0.2 | <0.2   |
|               |            | Azinphos-methyl (Guthion)         | mg/kg | 0.2 | <0.2   |
|               | Surrogates | 2-fluorobiphenyl (Surrogate)      | %     | -   | 96     |
|               |            | d14-p-terphenyl (Surrogate)       | %     | -   | 114    |
| LB077546.001  |            | Dichlorvos                        | mg/kg | 0.5 | <0.5   |
|               |            | Dimethoate                        | mg/kg | 0.5 | <0.5   |
|               |            | Diazinon (Dimpylate)              | mg/kg | 0.5 | <0.5   |
|               |            | Fenitrothion                      | mg/kg | 0.2 | <0.2   |
|               |            | Malathion                         | mg/kg | 0.2 | <0.2   |
|               |            | Chlorpyrifos (Chlorpyrifos Ethyl) | mg/kg | 0.2 | <0.2   |
|               |            | Parathion-ethyl (Parathion)       | mg/kg | 0.2 | <0.2   |
|               |            | Bromophos Ethyl                   | mg/kg | 0.2 | <0.2   |
|               |            | Methidathion                      | mg/kg | 0.5 | <0.5   |
|               |            | Ethion                            | mg/kg | 0.2 | <0.2   |
|               |            | Azinphos-methyl (Guthion)         | mg/kg | 0.2 | <0.2   |
|               | Surrogates | 2-fluorobiphenyl (Surrogate)      | %     | -   | 96     |
|               |            | d14-p-terphenyl (Surrogate)       | %     | -   | 114    |

22/5/2015 Page 17 of 35



Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

#### OP Pesticides in Water

#### Method: ME-(AU)-[ENV]AN400/AN420

| Sample Number | Parameter                         | Units | LOR | Result |
|---------------|-----------------------------------|-------|-----|--------|
| LB077619.001  | Dichlorvos                        | μg/L  | 0.5 | <0.5   |
|               | Dimethoate                        | μg/L  | 0.5 | <0.5   |
|               | Diazinon (Dimpylate)              | μg/L  | 0.5 | <0.5   |
|               | Fenitrothion                      | μg/L  | 0.2 | <0.2   |
|               | Malathion                         | μg/L  | 0.2 | <0.2   |
|               | Chlorpyrifos (Chlorpyrifos Ethyl) | μg/L  | 0.2 | <0.2   |
|               | Parathion-ethyl (Parathion)       | μg/L  | 0.2 | <0.2   |
|               | Bromophos Ethyl                   | μg/L  | 0.2 | <0.2   |
|               | Methidathion                      | μg/L  | 0.5 | <0.5   |
|               | Ethion                            | μg/L  | 0.2 | <0.2   |
|               | Azinphos-methyl                   | μg/L  | 0.2 | <0.2   |
| Surrogates    | 2-fluorobiphenyl (Surrogate)      | %     | -   | 94     |
|               | d14-p-terphenyl (Surrogate)       | %     | -   | 108    |

# PAH (Polynuclear Aromatic Hydrocarbons) in Soil Sample Number

# Method: ME-(AU)-[ENV]AN420

| Sample Number |            | Parameter                    | Units | LOR | Result |
|---------------|------------|------------------------------|-------|-----|--------|
| LB077544.001  |            | Naphtha <b>j</b> ene         | mg/kg | 0.1 | <0.1   |
|               |            | 2-methylnaphthalene          | mg/kg | 0.1 | <0.1   |
|               |            | 1-methylnaphthalene          | mg/kg | 0.1 | <0.1   |
|               |            | Acenaphthylene               | mg/kg | 0.1 | <0.1   |
|               |            | Acenaphthene                 | mg/kg | 0.1 | <0.1   |
|               |            | Fluorene                     | mg/kg | 0.1 | <0.1   |
|               |            | Phenanthrene                 | mg/kg | 0.1 | <0.1   |
|               |            | Anthracene                   | mg/kg | 0.1 | <0.1   |
|               |            | Fluoranthene                 | mg/kg | 0.1 | <0.1   |
|               |            | Pyrene                       | mg/kg | 0.1 | <0.1   |
|               |            | Benzo(a)anthracene           | mg/kg | 0.1 | <0.1   |
|               |            | Chrysene                     | mg/kg | 0.1 | <0.1   |
|               |            | Benzo(a)pyrene               | mg/kg | 0.1 | <0.1   |
|               |            | Indeno(1,2,3-cd)pyrene       | mg/kg | 0.1 | <0.1   |
|               |            | Dibenzo(a&h)anthracene       | mg/kg | 0.1 | <0.1   |
|               |            | Benzo(ghi)perylene           | mg/kg | 0.1 | <0.1   |
| Sun           |            | Total PAH                    | mg/kg | 0.8 | <0.8   |
|               | Surrogates | d5-nitrobenzene (Surrogate)  | %     | -   | 96     |
|               |            | 2-fluorobiphenyl (Surrogate) | %     | -   | 96     |
|               |            | d14-p-terphenyl (Surrogate)  | %     | -   | 114    |
| B077546.001   |            | Naphthalene                  | mg/kg | 0.1 | <0.1   |
|               |            | 2-methylnaphthalene          | mg/kg | 0.1 | <0.1   |
|               |            | 1-methylnaphthalene          | mg/kg | 0.1 | <0.1   |
|               |            | Acenaphthylene               | mg/kg | 0.1 | <0.1   |
|               |            | Acenaphthene                 | mg/kg | 0.1 | <0.1   |
|               |            | Fluorene                     | mg/kg | 0.1 | <0.1   |
|               |            | Phenanthrene                 | mg/kg | 0.1 | <0.1   |
|               |            | Anthracene                   | mg/kg | 0.1 | <0.1   |
|               |            | Fluoranthene                 | mg/kg | 0.1 | <0.1   |
|               |            | Pyrene                       | mg/kg | 0.1 | <0.1   |
|               |            | Benzo(a)anthracene           | mg/kg | 0.1 | <0.1   |
|               |            | Chrysene                     | mg/kg | 0.1 | <0.1   |
|               |            | Benzo(a)pyrene               | mg/kg | 0.1 | <0.1   |
|               |            | Indeno(1,2,3-cd)pyrene       | mg/kg | 0.1 | <0.1   |
|               |            | Dibenzo(a&h)anthracene       | mg/kg | 0.1 | <0.1   |
|               |            | Benzo(ghi)perylene           | mg/kg | 0.1 | <0.1   |
|               |            | Total PAH                    | mg/kg | 0.8 | <0.8   |
|               | Surrogates | d5-nitrobenzene (Surrogate)  | %     | -   | 106    |
|               |            | 2-fluorobiphenyl (Surrogate) | %     | -   | 106    |
|               |            | d14-p-terphenyl (Surrogate)  | %     | _   | 124    |

#### PAH (Polynuclear Aromatic Hydrocarbons) in Water

#### Method: ME-(AU)-[ENV]AN420

| * *           |                     |       |     |        |
|---------------|---------------------|-------|-----|--------|
| Sample Number | Parameter           | Units | LOR | Result |
| LB077619.001  | Naphthalene         | μg/L  | 0.1 | <0.1   |
|               | 2-methylnaphthalene | μg/L  | 0.1 | <0.1   |
|               | 1-methylnaphthalene | ug/L  | 0.1 | <0.1   |

22/5/2015 Page 18 of 35



Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

#### PAH (Polynuclear Aromatic Hydrocarbons) in Water (continued)

#### Method: ME-(AU)-[ENV]AN420

| Sample Number | Parameter                    | Units | LOR | Result |
|---------------|------------------------------|-------|-----|--------|
| LB077619.001  | Acenaphthylene               | μg/L  | 0.1 | <0.1   |
|               | Acenaphthene                 | μg/L  | 0.1 | <0.1   |
|               | Fluorene                     | μg/L  | 0.1 | <0.1   |
|               | Phenanthrene                 | μg/L  | 0.1 | <0.1   |
|               | Anthracene                   | µg/L  | 0.1 | <0.1   |
|               | Fluoranthene                 | μg/L  | 0.1 | <0.1   |
|               | Pyrene                       | μg/L  | 0.1 | <0.1   |
|               | Benzo(a)anthracene           | μg/L  | 0.1 | <0.1   |
|               | Chrysene                     | μg/L  | 0.1 | <0.1   |
|               | Benzo(a)pyrene               | μg/L  | 0.1 | <0.1   |
|               | Indeno(1,2,3-cd)pyrene       | μg/L  | 0.1 | <0.1   |
|               | Dibenzo(a&h)anthracene       | μg/L  | 0.1 | <0.1   |
|               | Benzo(ghi)perylene           | μg/L  | 0.1 | <0.1   |
| Surrogates    | d5-nitrobenzene (Surrogate)  | %     | -   | 96     |
|               | 2-fluorobiphenyl (Surrogate) | %     | -   | 94     |
|               | d14-p-terphenyl (Surrogate)  | %     | -   | 108    |

# PCBs in Soil

#### Method: ME-(AU)-[ENV]AN400/AN420

| Sample Number |            | Parameter                               | Units | LOR | Result |
|---------------|------------|-----------------------------------------|-------|-----|--------|
| LB077544.001  |            | Arochlor 1016                           | mg/kg | 0.2 | <0.2   |
|               |            | Arochlor 1221                           | mg/kg | 0.2 | <0.2   |
|               |            | Arochlor 1232                           | mg/kg | 0.2 | <0.2   |
|               |            | Arochlor 1242                           | mg/kg | 0.2 | <0.2   |
|               |            | Arochlor 1248                           | mg/kg | 0.2 | <0.2   |
|               |            | Arochlor 1254                           | mg/kg | 0.2 | <0.2   |
|               |            | Arochlor 1260                           | mg/kg | 0.2 | <0.2   |
|               |            | Arochlor 1262                           | mg/kg | 0.2 | <0.2   |
|               |            | Arochlor 1268                           | mg/kg | 0.2 | <0.2   |
|               |            | Total PCBs (Arochlors)                  | mg/kg | 1   | <1     |
|               | Surrogates | Tetrachloro-m-xylene (TCMX) (Surrogate) | %     | -   | 95     |
| LB077546.001  |            | Arochlor 1016                           | mg/kg | 0.2 | <0.2   |
|               |            | Arochlor 1221                           | mg/kg | 0.2 | <0.2   |
|               |            | Arochlor 1232                           | mg/kg | 0.2 | <0.2   |
|               |            | Arochlor 1242                           | mg/kg | 0.2 | <0.2   |
|               |            | Arochlor 1248                           | mg/kg | 0.2 | <0.2   |
|               |            | Arochlor 1254                           | mg/kg | 0.2 | <0.2   |
|               |            | Arochlor 1260                           | mg/kg | 0.2 | <0.2   |
|               |            | Arochlor 1262                           | mg/kg | 0.2 | <0.2   |
|               |            | Arochlor 1268                           | mg/kg | 0.2 | <0.2   |
|               |            | Total PCBs (Arochlors)                  | mg/kg | 1   | <1     |
|               | Surrogates | Tetrachloro-m-xylene (TCMX) (Surrogate) | %     | -   | 75     |
|               |            |                                         |       |     |        |

# PCBs in Water

# Method: ME-(AU)-[ENV]AN400/AN420

| Sample Number | Parameter     | Units | LOR | Result |
|---------------|---------------|-------|-----|--------|
| LB077619.001  | Arochlor 1016 | μg/L  | 1   | <1     |
|               | Arochlor 1221 | μg/L  | 1   | <1     |
|               | Arochlor 1232 | μg/L  | 1   | <1     |
|               | Arochlor 1242 | μg/L  | 1   | <1     |
|               | Arochlor 1248 | μg/L  | 1   | <1     |
|               | Arochlor 1254 | μg/L  | 1   | <1     |
|               | Arochlor 1260 | μg/L  | 1   | <1     |
|               | Arochlor 1262 | μg/L  | 1   | <1     |
|               | Arochlor 1268 | μg/L  | 1   | <1     |

#### Total Recoverable Metals in Soil by ICPOES from EPA 200.8 Digest

#### Method: ME-(AU)-[ENV]AN040/AN320

| Sample Number | Parameter    | Units | LOR | Result |
|---------------|--------------|-------|-----|--------|
| LB077689.001  | Arsenic, As  | mg/kg | 3   | <3     |
|               | Cadmium, Cd  | mg/kg | 0.3 | <0.3   |
|               | Chromium, Cr | mg/kg | 0.3 | <0.3   |
|               | Copper, Cu   | mg/kg | 0.5 | <0.5   |
|               | Lead, Pb     | mg/kg | 1   | <1     |
|               | Nickel, Ni   | mg/kg | 0.5 | <0.5   |

22/5/2015 Page 19 of 35

0.1

0.1

0.2

0.1

0.1

0.6

0.1

0.1

0.1

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

%

%

%

%

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

< 0.1

<0.1

<0.2

<0.1

<0.1

73

91

84

95

<0.6

<0.1

<0.1



# **METHOD BLANKS**

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

| Fotal Recoverable Metals in Soil I                         | by ICPOES from EPA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 200.8 Digest (continued) |                | Method: ME-0                            | AU)-[ENV]AN040/A  |
|------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|----------------|-----------------------------------------|-------------------|
| Sample Number                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Parameter                | Units          | LOR                                     | Result            |
| B077689.001                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Zinc, Zn                 | mg/kg          | 0.5                                     | <0.5              |
| B077691.001                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Arsenic, As              | mg/kg          | 3                                       | <3                |
| .5077001.001                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Cadmium, Cd              | mg/kg          | 0.3                                     | <0.3              |
|                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Chromium, Cr             | mg/kg          | 0.3                                     | <0.3              |
|                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Copper, Cu               | mg/kg          | 0.5                                     | <0.5              |
|                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          | mg/kg          | 1                                       | <1                |
|                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          | mg/kg          | 0.5                                     | <0.5              |
|                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          | mg/kg          | 0.5                                     | <0.5              |
| .B077692.001                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          | mg/kg          | 3                                       | <3                |
| .5077032.001                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          | mg/kg          | 0.3                                     | <0.3              |
|                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          | mg/kg          | 0.3                                     | <0.3              |
|                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          | mg/kg          | 0.5                                     | <0.5              |
|                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          |                | 1                                       | <1                |
|                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          | mg/kg          | 0.5                                     | <0.5              |
|                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          | mg/kg          | 0.5                                     | <0.5              |
|                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ZINC, ZII                | mg/kg          |                                         |                   |
| race Metals (Dissolved) in Wate                            | T BY ICPMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                          |                |                                         | d: ME-(AU)-[ENV]A |
| Sample Number                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          | Units          | LOR                                     | Result            |
| B077648.001                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          | μg/L           | 1                                       |                   |
|                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          | μg/L           | 0.1                                     | <0.1              |
|                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          | μg/L           | 1                                       | <1                |
|                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | · · ·                    | μg/L           | 1                                       | <1                |
|                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          | μg/L           | 1                                       | <1                |
|                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          | μg/L           | 1 -                                     | <1                |
|                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Zinc, Zn                 | μg/L           | 5                                       | <5                |
| RH (Total Recoverable Hydroca                              | rbons) in Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          |                |                                         | d: ME-(AU)-[ENV]A |
| Sample Number                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          | Units          | LOR                                     | Result            |
| B077544.001                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          | mg/kg          | 20                                      | <20               |
|                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          | mg/kg          | 45                                      | <45               |
|                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          | mg/kg          | 45                                      | <45               |
|                                                            | Lead, Pb   Nickel, Ni   Zinc, Zn   Arsenic, As   Cadmium, Cd   Chromium, Cr   Copper, Cu   Lead, Pb   Nickel, Ni   Zinc, Zn   Arsenic, As   Cadmium, Cd   Chromium, Cr   Copper, Cu   Lead, Pb   Nickel, Ni   Zinc, Zn   Cadmium, Cd   Chromium, Cr   Copper, Cu   Lead, Pb   Nickel, Ni   Zinc, Zn   Cadmium, Cr   Copper, Cu   Lead, Pb   Nickel, Ni   Zinc, Zn   Cadmium, Cr   Copper, Cu   Lead, Pb   Nickel, Ni   Zinc, Zn   Cadmium, Cr   Copper, Cu   Cadmium, Cr   Cadmium, C | mg/kg                    | 100            | <100                                    |                   |
|                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          | mg/kg          | 110                                     | <110              |
| B077546.001                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          | mg/kg          | 20                                      | <20               |
|                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          | mg/kg          | 45                                      | <45               |
|                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          | mg/kg          | 45                                      | <45               |
|                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TRH C37-C40              | mg/kg          | 100                                     | <100              |
|                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TRH C10-C36 Total        | mg/kg          | 110                                     | <110              |
| RH (Total Recoverable Hydroca                              | rbons) in Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          |                | Metho                                   | d: ME-(AU)-[ENV]A |
| Sample Number                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Parameter                | Units          | LOR                                     | Result            |
| B077619.001                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TRH C10-C14              | μg/L           | 50                                      | <50               |
|                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TRH C15-C28              | μg/L           | 200                                     | <200              |
|                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TRH C29-C36              | μg/L           | 200                                     | <200              |
|                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TRH C37-C40              | μg/L           | 200                                     | <200              |
|                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          |                | Method: MF-0                            | AU)-[ENV]AN433/A  |
| OC's in Soil                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          |                | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | ,                 |
|                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Parameter                | Units          | LOR                                     | Result            |
| <b>/OC's in Soil</b><br>Sample Number<br>LB077627.001 Mond | ocyclic Aromatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Parameter Benzene        | Units<br>mg/kg |                                         |                   |

22/5/2015 Page 20 of 35

Toluene

Ethylbenzene

Naphthalene

Total BTEX\*

Ethylbenzene

m/p-xylene

Toluene

Dibromofluoromethane (Surrogate)

d4-1,2-dichloroethane (Surrogate)

Bromofluorobenzene (Surrogate)

d8-toluene (Surrogate)

m/p-xylene

o-xylene

Hydrocarbons

Polycyclic VOCs

Monocyclic Aromatic

Hydrocarbons

Surrogates

Totals

LB077628.001



Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

| /OC's in Soil (continue | ed)                 |                                   |       | Method: ME-                                                 | (AU)-[ENV]AN433/A |
|-------------------------|---------------------|-----------------------------------|-------|-------------------------------------------------------------|-------------------|
| Sample Number           |                     | Parameter                         | Units | LOR                                                         | Result            |
| B077628.001             | Monocyclic Aromatic | o-xylene                          | mg/kg | 0.1                                                         | <0.1              |
|                         | Polycyclic VOCs     | Naphthalene                       | mg/kg | 0.1                                                         | <0.1              |
|                         | Surrogates          | Dibromofluoromethane (Surrogate)  | %     | -                                                           | 115               |
|                         |                     | d4-1,2-dichloroethane (Surrogate) | %     | -                                                           | 117               |
|                         |                     | d8-toluene (Surrogate)            | %     | -                                                           | 123               |
|                         |                     | Bromofluorobenzene (Surrogate)    | %     | -                                                           | 128               |
|                         | Totals              | Total BTEX*                       | mg/kg | 0.6                                                         | <0.6              |
| OCs in Water            |                     |                                   |       | Method: ME-                                                 | (AU)-[ENV]AN433/A |
| ample Number            |                     | Parameter                         | Units | LOR                                                         | Result            |
| B077578.001             | Monocyclic Aromatic | Benzene                           | μg/L  | 0.5                                                         | <0.5              |
|                         | Hydrocarbons        | Toluene                           | µg/L  | 0.5                                                         | <0.5              |
|                         |                     | Ethylbenzene                      | μg/L  | 0.5                                                         | <0.5              |
|                         |                     | m/p-xylene                        | μg/L  | 1                                                           | <1                |
|                         |                     | o-xylene                          | μg/L  | 0.5                                                         | <0.5              |
|                         | Polycyclic VOCs     | Naphthalene                       | μg/L  | 0.5                                                         | <0.5              |
|                         | Surrogates          | Dibromofluoromethane (Surrogate)  | %     | =                                                           | 96                |
|                         |                     | d4-1,2-dichloroethane (Surrogate) | %     | -                                                           | 96                |
|                         |                     | d8-toluene (Surrogate)            | %     | -                                                           | 102               |
|                         |                     | Bromofluorobenzene (Surrogate)    | %     | -                                                           | 91                |
| olatile Petroleum Hyd   | drocarbons in Soil  |                                   |       | Method: ME-(AU)-[E                                          | NVJAN433/AN434/A  |
| ample Number            |                     | Parameter                         | Units | LOR                                                         | Result            |
| B077627.001             |                     | TRH C6-C9                         | mg/kg | 20                                                          | <20               |
|                         | Surrogates          | Dibromofluoromethane (Surrogate)  | %     | -                                                           | 73                |
|                         |                     | d4-1,2-dichloroethane (Surrogate) | %     | 0.5 0.5 Method: ME-(AU)-[ENV LOR 20 20 Method: ME-(AU)-[ENV | 91                |
|                         |                     | d8-toluene (Surrogate)            | %     | -                                                           | 84                |
| B077628.001             |                     | TRH C6-C9                         | mg/kg | 20                                                          | <20               |
|                         | Surrogates          | Dibromofluoromethane (Surrogate)  | %     | -                                                           | 115               |
|                         |                     | d4-1,2-dichloroethane (Surrogate) | %     | -                                                           | 117               |
|                         |                     | d8-toluene (Surrogate)            | %     | -                                                           | 123               |
| olatile Petroleum Hyd   | drocarbons in Water |                                   |       | Method: ME-(AU)-[E                                          | NV]AN433/AN434/A  |
| ample Number            |                     | Parameter                         | Units | LOR                                                         | Result            |
| B077578.001             |                     | TRH C6-C9                         | µg/L  | 40                                                          | <40               |
|                         | Surrogates          | Dibromofluoromethane (Surrogate)  | %     | -                                                           | 96                |
|                         |                     | d4-1,2-dichloroethane (Surrogate) | %     | -                                                           | 96                |
|                         |                     | d8-toluene (Surrogate)            | %     | -                                                           | 102               |
|                         |                     | Bromofluorobenzene (Surrogate)    | %     | -                                                           | 91                |

22/5/2015 Page 21 of 35



# **DUPLICATES**

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

#### Mercury (dissolved) in Water

#### Method: ME-(AU)-[ENV]AN311/AN312

| Original     | Duplicate    | Parameter | Units | LOR    | Original | Duplicate | Criteria % | RPD % |
|--------------|--------------|-----------|-------|--------|----------|-----------|------------|-------|
| SE139330.034 | LB077728.014 | Mercury   | μg/L  | 0.0001 | -0.0392  | -0.0372   | 146        | 0     |

#### Mercury in Soil

#### Method: ME-(AU)-[ENV]AN312

| Original     | Duplicate    | Parameter | Units | LOR  | Original | Duplicate | Criteria % | RPD % |
|--------------|--------------|-----------|-------|------|----------|-----------|------------|-------|
| SE139331,004 | LB077666.014 | Mercury   | mg/kg | 0.01 | 0.27     | 0.27      | 49         | 1     |
| SE139332,005 | LB077666.024 | Mercury   | mg/kg | 0.01 | 0.05     | 0.05      | 137        | 0     |
| SE139332.016 | LB077667.014 | Mercury   | mg/kg | 0.01 | <0.01    | 0.01      | 200        | 0     |
| SE139332.027 | LB077667.024 | Mercury   | mg/kg | 0.01 | <0.01    | <0.01     | 200        | 0     |
| SE139333.008 | LB077668.014 | Mercury   | mg/kg | 0.01 | 0.01     | 0.01      | 200        | 0     |
| SE139333.021 | LB077668.023 | Mercury   | mg/kg | 0.01 | <0.01    | <0.01     | 200        | 0     |

#### **Moisture Content**

#### Method: ME-(AU)-[ENV]AN002

| Original     | Duplicate    | Parameter  | Units | LOR | Original | Duplicate | Criteria % | RPD % |
|--------------|--------------|------------|-------|-----|----------|-----------|------------|-------|
| SE139331.013 | LB077709.011 | % Moisture | %w/w  | 0.5 | <0.5     | <0.5      | 200        | 0     |
| SE139332.011 | LB077709.022 | % Moisture | %     | 0.5 | 10       | 10        | 40         | 0     |
| SE139332.022 | LB077709.033 | % Moisture | %     | 0.5 | 11       | 10        | 39         | 2     |
| SE139332.038 | LB077709.043 | % Moisture | %     | 0.5 | 8.3      | 7.8       | 42         | 7     |

#### **OC Pesticides in Soil**

# Method: ME-(AU)-[ENV]AN400/AN420

| Original     | Duplicate    |            | Parameter                               | Units | LOR | Original | Duplicate | Criteria % | RPD % |
|--------------|--------------|------------|-----------------------------------------|-------|-----|----------|-----------|------------|-------|
| SE139332.011 | LB077544.013 |            | Hexachlorobenzene (HCB)                 | mg/kg | 0.1 | <0.1     | <0.1      | 200        | 0     |
|              |              |            | Alpha BHC                               | mg/kg | 0.1 | <0.1     | <0.1      | 200        | 0     |
|              |              |            | Lindane                                 | mg/kg | 0.1 | <0.1     | <0.1      | 200        | 0     |
|              |              |            | Heptachlor                              | mg/kg | 0.1 | <0.1     | <0.1      | 200        | 0     |
|              |              |            | Aldrin                                  | mg/kg | 0.1 | <0.1     | <0.1      | 200        | 0     |
|              |              |            | Beta BHC                                | mg/kg | 0.1 | <0.1     | <0.1      | 200        | 0     |
|              |              |            | Delta BHC                               | mg/kg | 0.1 | <0.1     | <0.1      | 200        | 0     |
|              |              |            | Heptachlor epoxide                      | mg/kg | 0.1 | <0.1     | <0.1      | 200        | 0     |
|              |              |            | o,p'-DDE                                | mg/kg | 0.1 | <0.1     | <0.1      | 200        | 0     |
|              |              |            | Alpha Endosulfan                        | mg/kg | 0.2 | <0.2     | <0.2      | 200        | 0     |
|              |              |            | Gamma Chlordane                         | mg/kg | 0.1 | <0.1     | <0.1      | 200        | 0     |
|              |              |            | Alpha Chlordane                         | mg/kg | 0.1 | <0.1     | <0.1      | 200        | 0     |
|              |              |            | trans-Nonachlor                         | mg/kg | 0.1 | <0.1     | <0.1      | 200        | 0     |
|              |              |            | p,p'-DDE                                | mg/kg | 0.1 | <0.1     | <0.1      | 200        | 0     |
|              |              |            | Dieldrin                                | mg/kg | 0.2 | <0.2     | <0.2      | 200        | 0     |
|              |              |            | Endrin                                  | mg/kg | 0.2 | <0.2     | <0.2      | 200        | 0     |
|              |              |            | o,p'-DDD                                | mg/kg | 0.1 | <0.1     | <0.1      | 200        | 0     |
|              |              |            | o,p'-DDT                                | mg/kg | 0.1 | <0.1     | <0.1      | 200        | 0     |
|              |              |            | Beta Endosulfan                         | mg/kg | 0.2 | <0.2     | <0.2      | 200        | 0     |
|              |              |            | p,p'-DDD                                | mg/kg | 0.1 | <0.1     | <0.1      | 200        | 0     |
|              |              |            | p,p'-DDT                                | mg/kg | 0.1 | <0.1     | <0.1      | 200        | 0     |
|              |              |            | Endosulfan sulphate                     | mg/kg | 0.1 | <0.1     | <0.1      | 200        | 0     |
|              |              |            | Endrin Aldehyde                         | mg/kg | 0.1 | <0.1     | <0.1      | 200        | 0     |
|              |              |            | Methoxychlor                            | mg/kg | 0.1 | <0.1     | <0.1      | 200        | 0     |
|              |              |            | Endrin Ketone                           | mg/kg | 0.1 | <0.1     | <0.1      | 200        | 0     |
|              |              |            | Isodrin                                 | mg/kg | 0.1 | <0.1     | <0.1      | 200        | 0     |
|              |              |            | Mirex                                   | mg/kg | 0.1 | <0.1     | <0.1      | 200        | 0     |
|              |              | Surrogates | Tetrachloro-m-xylene (TCMX) (Surrogate) | mg/kg | -   | 0.14     | 0.15      | 30         | 2     |

#### OP Pesticides in Soil

### Method: ME-(AU)-[ENV]AN400/AN420

| Original     | Duplicate    | Parameter                         | Units | LOR | Original | Duplicate | Criteria % | RPD % |
|--------------|--------------|-----------------------------------|-------|-----|----------|-----------|------------|-------|
| SE139332.013 | LB077544.014 | Dichlorvos                        | mg/kg | 0.5 | <0.5     | <0.5      | 200        | 0     |
|              |              | Dimethoate                        | mg/kg | 0.5 | <0.5     | <0.5      | 200        | 0     |
|              |              | Diazinon (Dimpylate)              | mg/kg | 0.5 | <0.5     | <0.5      | 200        | 0     |
|              |              | Fenitrothion                      | mg/kg | 0.2 | <0.2     | <0.2      | 200        | 0     |
|              |              | Malathion                         | mg/kg | 0.2 | <0.2     | <0.2      | 200        | 0     |
|              |              | Chlorpyrifos (Chlorpyrifos Ethyl) | mg/kg | 0.2 | <0.2     | <0.2      | 200        | 0     |
|              |              | Parathion-ethyl (Parathion)       | mg/kg | 0.2 | <0.2     | <0.2      | 200        | 0     |
|              |              | Bromophos Ethyl                   | mg/kg | 0.2 | <0.2     | <0.2      | 200        | 0     |
|              |              | Methidathion                      | mg/kg | 0.5 | <0.5     | <0.5      | 200        | 0     |

22/5/2015 Page 22 of 35

# DUPLICATES



Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

#### OP Pesticides in Soil (continued)

#### Method: ME-(AU)-[ENV]AN400/AN420

| Original     | Duplicate    |            | Parameter                    | Units | LOR | Original | Duplicate | Criteria % | RPD % |
|--------------|--------------|------------|------------------------------|-------|-----|----------|-----------|------------|-------|
| SE139332.013 | LB077544.014 |            | Ethion                       | mg/kg | 0.2 | <0.2     | <0.2      | 200        | 0     |
|              |              |            | Azinphos-methyl (Guthion)    | mg/kg | 0.2 | <0.2     | <0.2      | 200        | 0     |
|              |              | Surrogates | 2-fluorobiphenyl (Surrogate) | mg/kg | -   | 0.5      | 0.5       | 30         | 4     |
|              |              |            | d14-p-terphenyl (Surrogate)  | mg/kg | -   | 0.6      | 0.5       | 30         | 8     |

#### PAH (Polynuclear Aromatic Hydrocarbons) in Soil

#### Method: ME-(AU)-[ENV]AN420

| Original     | Duplicate    | Parameter                                                                                                                                 | Units       | LOR | Original | Duplicate | Criteria % | RPD % |
|--------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----|----------|-----------|------------|-------|
| SE139332.013 | LB077544.014 | Naphthallene                                                                                                                              | mg/kg       | 0.1 | <0.1     | <0.1      | 200        | 0     |
|              |              | 2-methylnaphthalene                                                                                                                       | mg/kg       | 0.1 | <0.1     | <0.1      | 200        | 0     |
|              |              | 1-methylnaphthalene                                                                                                                       | mg/kg       | 0.1 | <0.1     | <0.1      | 200        | 0     |
|              |              | Acenaphthylene                                                                                                                            | mg/kg       | 0.1 | <0.1     | <0.1      | 200        | 0     |
|              |              | Acenaphthene                                                                                                                              | mg/kg       | 0.1 | <0.1     | <0.1      | 200        | 0     |
|              |              | Fluorene                                                                                                                                  | mg/kg       | 0.1 | <0.1     | <0.1      | 200        | 0     |
|              |              | Phenanthrene                                                                                                                              | mg/kg       | 0.1 | 0.3      | 0.2       | 71         | 78 ③  |
|              |              | Anthracene                                                                                                                                | mg/kg       | 0.1 | <0.1     | <0.1      | 200        | 0     |
|              |              | Fluoranthene                                                                                                                              | mg/kg       | 0.1 | 0.9      | 0.5       | 45         | 61 ②  |
|              |              | Pyrene                                                                                                                                    | mg/kg       | 0.1 | 0.9      | 0.5       | 45         | 50 ②  |
|              |              | Benzo(a)anthracene                                                                                                                        | mg/kg       | 0.1 | 0.5      | 0.3       | 53         | 48    |
|              |              | Chrysene                                                                                                                                  | mg/kg       | 0.1 | 0.4      | 0.3       | 58         | 33    |
|              |              | Benzo(b&j)fluoranthene                                                                                                                    | mg/kg       | 0.1 | 0.6      | 0.4       | 50         | 39    |
|              |              | Benzo(k)fluoranthene                                                                                                                      | mg/kg       | 0.1 | 0.2      | 0.2       | 77         | 14    |
|              |              | Benzo(a)pyrene                                                                                                                            | mg/kg       | 0.1 | 0.6      | 0.4       | 51         | 38    |
|              |              | Indeno(1,2,3-cd)pyrene                                                                                                                    | mg/kg       | 0.1 | 0.6      | 0.4       | 50         | 31    |
|              |              | Dibenzo(a&h)anthracene                                                                                                                    | mg/kg       | 0.1 | <0.1     | <0.1      | 200        | 0     |
|              |              | Benzo(ghi)perylene                                                                                                                        | mg/kg       | 0.1 | 0.3      | 0.2       | 68         | 26    |
|              |              | Carcinogenic PAHs, BaP TEQ <lor=0*< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>0.8</td><td>0.5</td><td>40</td><td>37</td></lor=0*<>        | TEQ (mg/kg) | 0.2 | 0.8      | 0.5       | 40         | 37    |
|              |              | Carcinogenic PAHs, BaP TEQ <lor=lor*< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td>0.9</td><td>0.6</td><td>49</td><td>32</td></lor=lor*<>    | TEQ (mg/kg) | 0.3 | 0.9      | 0.6       | 49         | 32    |
|              |              | Carcinogenic PAHs, BaP TEQ <lor=lor 2*<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>0.8</td><td>0.6</td><td>38</td><td>35</td></lor=lor> | TEQ (mg/kg) | 0.2 | 0.8      | 0.6       | 38         | 35    |
|              |              | Total PAH                                                                                                                                 | mg/kg       | 0.8 | 5.3      | 3.5       | 48         | 42    |
|              | Surroga      | tes d5-nitrobenzene (Surrogate)                                                                                                           | mg/kg       | _   | 0.5      | 0.5       | 30         | 2     |
|              |              | 2-fluorobiphenyl (Surrogate)                                                                                                              | mg/kg       | -   | 0.5      | 0.5       | 30         | 4     |
|              |              | d14-p-terphenyl (Surrogate)                                                                                                               | mg/kg       | -   | 0.6      | 0.5       | 30         | 8     |

# PCBs in Soil

#### Method: ME-(AU)-[ENV]AN400/AN420

| Original     | Duplicate    | Parameter                           | Units             | LOR | Original | Duplicate | Criteria % | RPD % |
|--------------|--------------|-------------------------------------|-------------------|-----|----------|-----------|------------|-------|
| SE139332.011 | LB077544.013 | Arochlor 1016                       | mg/kg             | 0.2 | <0.2     | <0.2      | 200        | 0     |
|              |              | Arochlor 1221                       | mg/kg             | 0.2 | <0.2     | <0.2      | 200        | 0     |
|              |              | Arochlor 1232                       | mg/kg             | 0.2 | <0.2     | <0.2      | 200        | 0     |
|              |              | Arochlor 1242                       | mg/kg             | 0.2 | <0.2     | <0.2      | 200        | 0     |
|              |              | Arochlor 1248                       | mg/kg             | 0.2 | <0.2     | <0.2      | 200        | 0     |
|              |              | Arochlor 1254                       | mg/kg             | 0.2 | <0.2     | <0.2      | 200        | 0     |
|              |              | Arochlor 1260                       | mg/kg             | 0.2 | <0.2     | <0.2      | 200        | 0     |
|              |              | Arochlor 1262                       | mg/kg             | 0.2 | <0.2     | <0.2      | 200        | 0     |
|              |              | Arochlor 1268                       | mg/kg             | 0.2 | <0.2     | <0.2      | 200        | 0     |
|              |              | Total PCBs (Arochlors)              | mg/kg             | 1   | <1       | <1        | 200        | 0     |
|              | Surr         | rogates Tetrachloro-m-xylene (TCMX) | (Surrogate) mg/kg | -   | 0        | 0         | 30         | 2     |

# pH in soil (1:5)

# Method: ME-(AU)-[ENV]AN101

| Original     | Duplicate    | Parameter | Units    | LOR | Original | Duplicate | Criteria % | RPD % |
|--------------|--------------|-----------|----------|-----|----------|-----------|------------|-------|
| SE139332,013 | LB077736.012 | рН        | pH Units | -   | 8.8      | 8.8       | 31         | 0     |
| SE139333.008 | LB077736.023 | рН        | pH Units | -   | 5.3      | 5.3       | 32         | 0     |
| SE139333.017 | LB077736.031 | рН        | pH Units | -   | 6.1      | 6.1       | 32         | 1     |

# Total Recoverable Metals in Soil by ICPOES from EPA 200.8 Digest

#### Method: ME-(AU)-[ENV]AN040/AN320

| Original     | Duplicate    | Parameter    | Units | LOR | Original | Duplicate | Criteria % | RPD % |
|--------------|--------------|--------------|-------|-----|----------|-----------|------------|-------|
| SE139331.007 | LB077689.014 | Arsenic, As  | mg/kg | 3   | 8        | 9         | 42         | 16    |
|              |              | Cadmium, Cd  | mg/kg | 0.3 | 3.5      | 3.7       | 38         | 4     |
|              |              | Chromium, Cr | mg/kg | 0.3 | 61       | 65        | 31         | 6     |
|              |              | Copper, Cu   | mg/kg | 0.5 | 160      | 180       | 30         | 13    |
|              |              | Lead, Pb     | mg/kg | 1   | 14000    | 14000     | 30         | 0     |
|              |              | Nickel, Ni   | mg/kg | 0.5 | 8.0      | 9.1       | 36         | 14    |
|              |              | Zinc, Zn     | mg/kg | 0.5 | 3100     | 3000      | 30         | 2     |

22/5/2015 Page 23 of 35



# **DUPLICATES**

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

#### Total Recoverable Metals in Soil by ICPOES from EPA 200.8 Digest (continued)

#### Method: ME-(AU)-[ENV]AN040/AN320

| Original     | Duplicate    | Parameter    | Units | LOR | Original     | Duplicate    | Criteria % | RPD % |
|--------------|--------------|--------------|-------|-----|--------------|--------------|------------|-------|
| SE139332.007 | LB077689.024 | Arsenic, As  | mg/kg | 3   | 3            | 4            | 58         | 8     |
|              |              | Cadmium, Cd  | mg/kg | 0.3 | <0.3         | <0.3         | 144        | 0     |
|              |              | Chromium, Cr | mg/kg | 0.3 | 13           | 10           | 34         | 21    |
|              |              | Copper, Cu   | mg/kg | 0.5 | 15           | 14           | 33         | 4     |
|              |              | Lead, Pb     | mg/kg | 1   | 51           | 46           | 32         | 10    |
|              |              | Nickel, Ni   | mg/kg | 0.5 | 18           | 17           | 33         | 8     |
|              |              | Zinc, Zn     | mg/kg | 0.5 | 67           | 70           | 33         | 5     |
| SE139332.018 | LB077691.014 | Arsenic, As  | mg/kg | 3   | 6            | 4            | 50         | 31    |
|              |              | Cadmium, Cd  | mg/kg | 0.3 | 0.4          | 0.4          | 103        | 7     |
|              |              | Chromium, Cr | mg/kg | 0.3 | 15           | 15           | 33         | 2     |
|              |              | Copper, Cu   | mg/kg | 0.5 | 48           | 44           | 31         | 7     |
|              |              | Lead, Pb     | mg/kg | 1   | 130          | 140          | 31         | 10    |
|              |              | Nickel, Ni   | mg/kg | 0.5 | 35           | 35           | 31         | 2     |
|              |              | Zinc, Zn     | mg/kg | 0.5 | 400          | 350          | 31         | 14    |
| SE139332.029 | LB077691.024 | Arsenic, As  | mg/kg | 3   | 7            | 8            | 43         | 6     |
|              |              | Cadmium, Cd  | mg/kg | 0.3 | 0.3          | 0.4          | 118        | 18    |
|              |              | Chromium, Cr | mg/kg | 0.3 | 15           | 17           | 33         | 13    |
|              |              | Copper, Cu   | mg/kg | 0.5 | 17           | 17           | 33         | 5     |
|              |              | Lead, Pb     | mg/kg | 1   | 110          | 110          | 31         | 4     |
|              |              | Nickel, Ni   | mg/kg | 0.5 | 11           | 12           | 34         | 9     |
|              |              | Zinc, Zn     | mg/kg | 0.5 | 180          | 190          | 31         | 6     |
| SE139333.012 | LB077692.014 | Arsenic, As  | mg/kg | 3   | 9            | 16           | 38         | 53 ②  |
|              |              | Cadmium, Cd  | mg/kg | 0.3 | <0.3         | <0.3         | 180        | 0     |
|              |              | Chromium, Cr | mg/kg | 0.3 | 10           | 13           | 34         | 28    |
|              |              | Copper, Cu   | mg/kg | 0.5 | 19           | 19           | 33         | 0     |
|              |              | Lead, Pb     | mg/kg | 1   | 12           | 14           | 38         | 11    |
|              |              | Nickel, Ni   | mg/kg | 0.5 | 3.8          | 5.5          | 41         | 38    |
|              |              | Zinc, Zn     | mg/kg | 0.5 | 33           | 35           | 36         | 5     |
| SE139362.003 | LB077692.024 | Cadmium, Cd  | mg/kg | 0.3 | 0.0732643895 | 0.1082872403 | 200        | 0     |

#### Trace Metals (Dissolved) in Water by ICPMS

#### Method: ME-(AU)-[ENV]AN318

| Original     | Duplicate    | Parameter    | Units | LOR | Original | Duplicate | Criteria % | RPD % |
|--------------|--------------|--------------|-------|-----|----------|-----------|------------|-------|
| SE139330.031 | LB077648.014 | Arsenic, As  | μg/L  | 1   | 0.66     | 0.64      | 169        | 0     |
|              |              | Cadmium, Cd  | μg/L  | 0.1 | 0        | 0         | 200        | 0     |
|              |              | Chromium, Cr | μg/L  | 1   | 0.65     | 0.65      | 169        | 0     |
|              |              | Copper, Cu   | μg/L  | 1   | 1.32     | 1.3       | 91         | 2     |
|              |              | Lead, Pb     | μg/L  | 1   | 0.58     | 0.59      | 186        | 0     |
|              |              | Nickel, Ni   | μg/L  | 1   | 1.48     | 1.69      | 78         | 13    |
|              |              | Zinc, Zn     | μg/L  | 5   | 20.22    | 18.03     | 41         | 11    |

#### TRH (Total Recoverable Hydrocarbons) in Soil

#### Method: ME-(AU)-[ENV]AN403

| TRH C15-C28         mg/kg         45         <45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Original     | Duplicate    |             | Parameter                       | Units | LOR | Original | Duplicate | Criteria % | RPD % |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------|-------------|---------------------------------|-------|-----|----------|-----------|------------|-------|
| TRH C29-C36   mg/kg   45   <45   <45   200   0     TRH C37-C40   mg/kg   100   <100   <100   200   0     TRH C10-C36 Total   mg/kg   110   <110   <110   200   0     TRH C10-C40 Total   mg/kg   210   <210   <210   <210   200   0     TRH C10-C10-C16 (F2)   mg/kg   25   <25   <25   25   200   0     TRH C10-C36 (F3)   mg/kg   25   <25   <25   200   0     TRH C10-C36 (F3)   mg/kg   25   <25   <25   200   0     TRH C10-C36 (F3)   mg/kg   20   <30   <30   <30     TRH C10-C36 (F3)   mg/kg   20   <30   <30   <30   <30     TRH C37-C40   mg/kg   20   <30   <30   <30   <30     TRH C35-C36   mg/kg   45   0   0   200   0     TRH C39-C36   mg/kg   45   0   0   200   0     TRH C30-C36 Total   mg/kg   45   0   0   200   0     TRH C30-C36 Total   mg/kg   100   0   0   200   0     TRH C10-C36 Total   mg/kg   100   0   0   200   0     TRH C10-C36 Total   mg/kg   25   0   0   200   0     TRH C10-C36 Total   mg/kg   25   0   0   200   0     TRH C10-C36 Total   mg/kg   25   0   0   200   0     TRH C10-C36 Total   mg/kg   25   0   0   200   0     TRH C10-C36 Total   mg/kg   25   0   0   200   0     TRH C10-C36 Total   mg/kg   25   0   0   200   0     TRH C10-C36 Total   mg/kg   25   0   0   200   0     TRH C10-C36 Total   mg/kg   25   0   0   200   0     TRH C10-C36 Total   mg/kg   25   0   0   200   0     TRH C10-C36 Total   mg/kg   25   0   0   200   0     TRH C10-C36 Total   mg/kg   25   0   0   200   0     TRH C10-C36 Total   mg/kg   25   0   0   200   0     TRH C10-C36 Total   mg/kg   25   0   0   0   200   0     TRH C10-C36 Total   mg/kg   25   0   0   0   200   0     TRH C10-C36 Total   mg/kg   25   0   0   0   200   0     TRH C10-C36 Total   mg/kg   25   0   0   0   200   0     TRH C10-C36 Total   mg/kg   25   0   0   0   200   0     TRH C10-C36 Total   mg/kg   25   0   0   0   200   0     TRH C10-C36 Total   mg/kg   25   0   0   0   200   0     TRH C10-C36 Total   mg/kg   25   0   0   0   200   0     TRH C10-C36 Total   mg/kg   25   0   0   0   200   0     TRH C10-C36 Total   mg/kg   25   0   0   0   200   0     TRH C10-C3  | SE139332.013 | LB077544.014 |             | TRH C10-C14                     | mg/kg | 20  | <20      | <20       | 200        | 0     |
| TRH C37-C40   mg/kg   100   <100   <100   200   0     TRH C10-C36 Total   mg/kg   110   <110   <110   200   0     TRH C10-C40 Total   mg/kg   210   <210   <210   <210   200   0     TRH F Bands   TRH > C10-C16 (F2)   Naphthalene   mg/kg   25   <25   <25   200   0     TRH > C10-C34 (T64)   mg/kg   25   <25   <25   200   0     TRH > C10-C34 (T64)   mg/kg   25   <25   <25   200   0     TRH > C34-C40 (F4)   mg/kg   30   <30   <30   <30   <30   <30     TRH > C34-C40 (F4)   mg/kg   30   <30   <30   <30   <30   <30   <30     TRH > C34-C40 (F4)   mg/kg   30   <30   <30   <30   <30   <30   <30   <30     TRH > C34-C40 (F4)   mg/kg   30   <30   <30   <30   <30   <30   <30   <30     TRH > C34-C40 (F4)   mg/kg   45   0   0   200   0     TRH C34-C40 (F4)   mg/kg   45   0   0   200   0     TRH C34-C40   mg/kg   45   0   0   200   0     TRH C34-C40   mg/kg   45   0   0   200   0     TRH C34-C40   mg/kg   110   0   0   200   0     TRH C34-C40 Total   mg/kg   110   0   0   200   0     TRH C10-C36 Total   mg/kg   210   0   0   0   200   0     TRH C10-C36 Total   mg/kg   25   0   0   0   200   0     TRH C10-C36 (F2)   mg/kg   25   0   0   0   200   0     TRH TRH F Bands   TRH > C10-C16 (F2)   Naphthalene   mg/kg   25   0   0   0   200   0     TRH > C10-C16 (F2) - Naphthalene   mg/kg   25   0   0   0   200   0     TRH > C10-C34 (F3)   mg/kg   30   0   0   0   0   0     TRH > C10-C34 (F3)   mg/kg   30   0   0   0   0   0     TRH > C10-C34 (F3)   mg/kg   30   0   0   0   0     TRH > C10-C34 (F3)   mg/kg   30   0   0   0   0     TRH > C10-C34 (F3)   mg/kg   30   0   0   0   0     TRH > C10-C34 (F3)   mg/kg   30   0   0   0   0     TRH > C10-C34 (F3)   mg/kg   30   0   0   0   0     TRH > C10-C34 (F3)   mg/kg   30   0   0   0   0     TRH > C10-C34 (F3)   mg/kg   30   0   0   0   0     TRH > C10-C34 (F3)   mg/kg   30   0   0   0   0     TRH > C10-C34 (F3)   mg/kg   30   0   0   0   0     TRH > C10-C34 (F3)   mg/kg   30   0   0   0   0     TRH > C10-C34 (F3)   mg/kg   30   0   0   0   0     TRH > C10-C34 (F3)   mg/kg   30   0   0   0    |              |              |             | TRH C15-C28                     | mg/kg | 45  | <45      | <45       | 200        | 0     |
| TRH C10-C36 Total   mg/kg   110   <110   <110   200   0     TRH C10-C40 Total   mg/kg   210   <210   <210   <200   0     TRH F Bands   TRH > C10-C16 (F2)   mg/kg   25   <25   <25   200   0     TRH > C10-C16 (F2) - Naphthalene   mg/kg   25   <25   <25   <25   200   0     TRH > C10-C34 (F3)   mg/kg   90   <90   <90   <90   <90   <90   <90   <0     TRH > C34-C40 (F4)   mg/kg   20   <120   <120   <200   0     TRH C10-C34 (F3)   mg/kg   20   <120   <120   <200   0     TRH C10-C4   mg/kg   20   0   0   0   200   0     TRH C10-C36   mg/kg   45   0   0   200   0     TRH C37-C40   mg/kg   45   0   0   200   0     TRH C37-C40   mg/kg   110   0   0   0   200   0     TRH C10-C36 Total   mg/kg   210   0   0   0   200   0     TRH C10-C40 Total   mg/kg   210   0   0   0   200   0     TRH C10-C40 Total   mg/kg   25   0   0   0   200   0     TRH C10-C40 (F2) - Naphthalene   mg/kg   25   0   0   0   200   0     TRH > C10-C16 (F2) - Naphthalene   mg/kg   25   0   0   0   200   0     TRH > C10-C16 (F2) - Naphthalene   mg/kg   25   0   0   200   0     TRH > C10-C16 (F2) - Naphthalene   mg/kg   90   0   0   0   200   0     TRH > C10-C16 (F2) - Naphthalene   mg/kg   90   0   0   0   200   0     TRH > C10-C16 (F2) - Naphthalene   mg/kg   90   0   0   0   200   0     TRH > C10-C16 (F2) - Naphthalene   mg/kg   90   0   0   0   200   0     TRH > C10-C16 (F2) - Naphthalene   mg/kg   90   0   0   0   0   200   0     TRH > C10-C16 (F2) - Naphthalene   mg/kg   90   0   0   0   0   0   0     TRH > C10-C16 (F2) - Naphthalene   mg/kg   90   0   0   0   0   0     TRH > C10-C16 (F2) - Naphthalene   mg/kg   90   0   0   0   0   0   0     TRH > C10-C16 (F2) - Naphthalene   mg/kg   90   0   0   0   0   0     TRH > C10-C16 (F2) - Naphthalene   mg/kg   90   0   0   0   0   0     TRH > C10-C16 (F2) - Naphthalene   mg/kg   90   0   0   0   0   0     TRH > C10-C16 (F2) - Naphthalene   mg/kg   90   0   0   0   0   0     TRH > C10-C16 (F2) - Naphthalene   mg/kg   90   0   0   0   0   0   0     TRH > C10-C16 (F2) - Naphthalene   mg/kg   90   0   0   0   0 |              |              |             | TRH C29-C36                     | mg/kg | 45  | <45      | <45       | 200        | 0     |
| TRH C10-C40 Total mg/kg 210 <210 <210 200 0  TRH F Bands TRH > C10-C16 (F2) mg/kg 25 <25 <25 200 0  TRH > C10-C16 (F2) - Naphthalene mg/kg 25 <25 <25 200 0  TRH > C16-C34 (F3) mg/kg 90 <90 <90 200 0  TRH > C34-C40 (F4) mg/kg 120 <120 <120 200 0  TRH C15-C24 mg/kg 20 0 0 0 0  TRH C15-C28 mg/kg 45 0 0 0 0 0  TRH C29-C36 mg/kg 45 0 0 0 0 0  TRH C29-C36 mg/kg 45 0 0 0 0 0 0  TRH C34-C40 Total mg/kg 100 0 0 0 0 0 0  TRH C10-C36 Total mg/kg 110 0 0 0 0 0 0 0  TRH C10-C40 Total mg/kg 210 0 0 0 0 0 0 0 0  TRH C10-C40 Total mg/kg 210 0 0 0 0 0 0 0 0 0 0  TRH C10-C40 Total mg/kg 210 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |              |             | TRH C37-C40                     | mg/kg | 100 | <100     | <100      | 200        | 0     |
| TRH F Bands TRH > C10-C16 (F2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |              |             | TRH C10-C36 Total               | mg/kg | 110 | <110     | <110      | 200        | 0     |
| TRH > C10-C16 (F2) - Naphthalene mg/kg 25 <25 <25 200 0  TRH > C16-C34 (F3) mg/kg 90 <90 <90 <90 200 0  TRH > C34-C40 (F4) mg/kg 120 <120 <120 200 0  TRH C15-C28 mg/kg 20 0 0 0 200 0  TRH C29-C36 mg/kg 45 0 0 0 200 0  TRH C29-C36 mg/kg 45 0 0 0 200 0  TRH C10-C36 Total mg/kg 100 0 0 200 0  TRH C10-C36 Total mg/kg 110 0 0 0 200 0  TRH C10-C40 Total mg/kg 110 0 0 0 200 0  TRH C10-C40 Total mg/kg 210 0 0 0 200 0  TRH C10-C40 Total mg/kg 210 0 0 0 200 0  TRH C10-C40 Total mg/kg 210 0 0 0 200 0  TRH C10-C40 Total mg/kg 210 0 0 0 200 0  TRH C10-C40 Total mg/kg 25 0 0 0 200 0  TRH C10-C40 Total mg/kg 25 0 0 0 200 0  TRH C10-C40 Total mg/kg 25 0 0 0 200 0  TRH C10-C40 Total mg/kg 25 0 0 0 200 0  TRH C10-C16 (F2) - Naphthalene mg/kg 25 0 0 0 200 0  TRH > C10-C16 (F2) - Naphthalene mg/kg 25 0 0 0 200 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |              |             | TRH C10-C40 Total               | mg/kg | 210 | <210     | <210      | 200        | 0     |
| TRH > C16-C34 (F3) mg/kg 90 < 90 < 90 < 90 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |              | TRH F Bands | TRH >C10-C16 (F2)               | mg/kg | 25  | <25      | <25       | 200        | 0     |
| TRH > C34-C40 (F4) mg/kg 120 <120 <120 200 0  SE139362.002 LB077546.017  TRH C10-C14 mg/kg 20 0 0 0 200 0  TRH C29-C36 mg/kg 45 0 0 0 200 0  TRH C29-C36 mg/kg 45 0 0 0 200 0  TRH C37-C40 mg/kg 100 0 0 200 0  TRH C10-C36 Total mg/kg 110 0 0 0 200 0  TRH C10-C40 Total mg/kg 110 0 0 0 200 0  TRH C10-C40 Total mg/kg 210 0 0 200 0  TRH F Bands TRH > C10-C16 (F2) mg/kg 25 0 0 0 200 0  TRH > C10-C16 (F2) - Naphthalene mg/kg 25 0 0 0 200 0  TRH > C10-C36 (F3) mg/kg 90 0 0 0 200 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |              |             | TRH >C10-C16 (F2) - Naphthalene | mg/kg | 25  | <25      | <25       | 200        | 0     |
| SE139362.002 LB077546.017 TRH C10-C14 mg/kg 20 0 0 0 200 0 TRH C15-C28 mg/kg 45 0 0 0 200 0 TRH C29-C36 mg/kg 45 0 0 0 200 0 TRH C37-C40 mg/kg 100 0 0 200 0 TRH C10-C36 Total mg/kg 110 0 0 0 200 0 TRH C10-C40 Total mg/kg 110 0 0 0 200 0 TRH C10-C40 Total mg/kg 210 0 0 200 0 TRH F Bands TRH F Bands TRH > C10-C16 (F2) mg/kg 25 0 0 0 200 0 TRH > C10-C16 (F2) - Naphthalene mg/kg 25 0 0 0 200 0 TRH > C10-C16 (F2) - Naphthalene mg/kg 90 0 0 0 200 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |              |             | TRH >C16-C34 (F3)               | mg/kg | 90  | <90      | <90       | 200        | 0     |
| TRH C15-C28       mg/kg       45       0       0       200       0         TRH C29-C36       mg/kg       45       0       0       200       0         TRH C37-C40       mg/kg       100       0       0       200       0         TRH C10-C36 Total       mg/kg       110       0       0       200       0         TRH C10-C40 Total       mg/kg       210       0       0       200       0         TRH F Bands       TRH >C10-C16 (F2)       mg/kg       25       0       0       200       0         TRH >C10-C16 (F2) - Naphthalene       mg/kg       25       0       0       200       0         TRH >C16-C34 (F3)       mg/kg       90       0       0       200       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |              |             | TRH >C34-C40 (F4)               | mg/kg | 120 | <120     | <120      | 200        | 0     |
| TRH C29-C36         mg/kg         45         0         0         200         0           TRH C37-C40         mg/kg         100         0         0         200         0           TRH C10-C36 Total         mg/kg         110         0         0         200         0           TRH C10-C40 Total         mg/kg         210         0         0         200         0           TRH F Bands         TRH >C10-C16 (F2)         mg/kg         25         0         0         200         0           TRH >C10-C16 (F2) - Naphthalene         mg/kg         25         0         0         200         0           TRH >C16-C34 (F3)         mg/kg         90         0         0         200         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SE139362.002 | LB077546.017 |             | TRH C10-C14                     | mg/kg | 20  | 0        | 0         | 200        | 0     |
| TRH C37-C40         mg/kg         100         0         0         200         0           TRH C10-C36 Total         mg/kg         110         0         0         200         0           TRH C10-C40 Total         mg/kg         210         0         0         200         0           TRH F Bands         TRH >C10-C16 (F2)         mg/kg         25         0         0         200         0           TRH >C10-C16 (F2) - Naphthalene         mg/kg         25         0         0         200         0           TRH >C16-C34 (F3)         mg/kg         90         0         0         200         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |              |             | TRH C15-C28                     | mg/kg | 45  | 0        | 0         | 200        | 0     |
| TRH C10-C36 Total         mg/kg         110         0         0         200         0           TRH C10-C40 Total         mg/kg         210         0         0         200         0           TRH F Bands         TRH >C10-C16 (F2)         mg/kg         25         0         0         200         0           TRH >C10-C16 (F2) - Naphthalene         mg/kg         25         0         0         200         0           TRH >C16-C34 (F3)         mg/kg         90         0         0         200         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |              |             | TRH C29-C36                     | mg/kg | 45  | 0        | 0         | 200        | 0     |
| TRH C10-C40 Total         mg/kg         210         0         0         200         0           TRH F Bands         TRH >C10-C16 (F2)         mg/kg         25         0         0         200         0           TRH >C10-C16 (F2) - Naphthalene         mg/kg         25         0         0         200         0           TRH >C16-C34 (F3)         mg/kg         90         0         0         200         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |              |             | TRH C37-C40                     | mg/kg | 100 | 0        | 0         | 200        | 0     |
| TRH F Bands         TRH >C10-C16 (F2)         mg/kg         25         0         0         200         0           TRH >C10-C16 (F2) - Naphthalene         mg/kg         25         0         0         200         0           TRH >C16-C34 (F3)         mg/kg         90         0         0         200         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |              |             | TRH C10-C36 Total               | mg/kg | 110 | 0        | 0         | 200        | 0     |
| TRH >C10-C16 (F2) - Naphthalene         mg/kg         25         0         0         200         0           TRH >C16-C34 (F3)         mg/kg         90         0         0         200         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |              |             | TRH C10-C40 Total               | mg/kg | 210 | 0        | 0         | 200        | 0     |
| TRH >C16-C34 (F3) mg/kg 90 0 0 200 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |              | TRH F Bands | TRH >C10-C16 (F2)               | mg/kg | 25  | 0        | 0         | 200        | 0     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |              |             | TRH >C10-C16 (F2) - Naphthalene | mg/kg | 25  | 0        | 0         | 200        | 0     |
| TRH >C34-C40 (F4) mg/kg 120 0 0 200 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |              |             | TRH >C16-C34 (F3)               | mg/kg | 90  | 0        | 0         | 200        | 0     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |              |             | TRH >C34-C40 (F4)               | mg/kg | 120 | 0        | 0         | 200        | 0     |

22/5/2015 Page 24 of 35



Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

#### VOC's in Soil

#### Method: ME-(AU)-[ENV]AN433/AN434

| Original     | Duplicate    |            | Parameter                         | Units | LOR | Original | Duplicate | Criteria % | RPD % |
|--------------|--------------|------------|-----------------------------------|-------|-----|----------|-----------|------------|-------|
| SE139332.009 | LB077627.014 | Monocyclic | Benzene                           | mg/kg | 0.1 | <0.1     | <0.1      | 200        | 0     |
|              |              | Aromatic   | Toluene                           | mg/kg | 0.1 | <0.1     | <0.1      | 200        | 0     |
|              |              |            | Ethylbenzene                      | mg/kg | 0.1 | <0.1     | <0.1      | 200        | 0     |
|              |              |            | m/p-xylene                        | mg/kg | 0.2 | <0.2     | <0.2      | 200        | 0     |
|              |              |            | o-xylene                          | mg/kg | 0.1 | <0.1     | <0.1      | 200        | 0     |
|              |              | Polycyclic | Naphthalene                       | mg/kg | 0.1 | <0.1     | <0.1      | 200        | 0     |
|              |              | Surrogates | Dibromofluoromethane (Surrogate)  | mg/kg | _   | 3.9      | 4.2       | 50         | 7     |
|              |              |            | d4-1,2-dichloroethane (Surrogate) | mg/kg | _   | 4.9      | 5.1       | 50         | 4     |
|              |              |            | d8-toluene (Surrogate)            | mg/kg | _   | 4.3      | 4.3       | 50         | 1     |
|              |              |            | Bromofluorobenzene (Surrogate)    | mg/kg | _   | 4.6      | 5.3       | 50         | 15    |
|              |              | Totals     | Total Xylenes*                    | mg/kg | 0.3 | <0.3     | <0.3      | 200        | 0     |
|              |              |            | Total BTEX*                       | mg/kg | 0.6 | <0.6     | <0.6      | 200        | 0     |
| SE139332.027 | LB077627.025 | Monocyclic | Benzene                           | mg/kg | 0.1 | <0.1     | <0.1      | 200        | 0     |
|              |              | Aromatic   | Toluene                           | mg/kg | 0.1 | <0.1     | <0.1      | 200        | 0     |
|              |              |            | Ethylbenzene                      | mg/kg | 0.1 | <0.1     | <0.1      | 200        | 0     |
|              |              |            | m/p-xylene                        | mg/kg | 0.2 | <0.2     | <0.2      | 200        | 0     |
|              |              |            | o-xylene                          | mg/kg | 0.1 | <0.1     | <0.1      | 200        | 0     |
|              |              | Polycyclic | Naphthalene                       | mg/kg | 0.1 | <0.1     | <0.1      | 200        | 0     |
|              |              | Surrogates | Dibromofluoromethane (Surrogate)  | mg/kg | -   | 4.2      | 3.5       | 50         | 19    |
|              |              |            | d4-1,2-dichloroethane (Surrogate) | mg/kg | _   | 5.0      | 4.2       | 50         | 16    |
|              |              |            | d8-toluene (Surrogate)            | mg/kg | _   | 5.5      | 4.6       | 50         | 19    |
|              |              |            | Bromofluorobenzene (Surrogate)    | mg/kg | _   | 5.4      | 4.5       | 50         | 19    |
|              |              | Totals     | Total Xylenes*                    | mg/kg | 0.3 | <0.3     | <0.3      | 200        | 0     |
|              |              |            | Total BTEX*                       | mg/kg | 0.6 | <0.6     | <0.6      | 200        | 0     |
| SE139333.012 | LB077628.014 | Monocyclic | Benzene                           | mg/kg | 0.1 | <0.1     | <0.1      | 200        | 0     |
|              |              | Aromatic   | Toluene                           | mg/kg | 0.1 | <0.1     | <0.1      | 200        | 0     |
|              |              |            | Ethylbenzene                      | mg/kg | 0.1 | <0.1     | <0.1      | 200        | 0     |
|              |              |            | m/p-xylene                        | mg/kg | 0.2 | <0.2     | <0.2      | 200        | 0     |
|              |              |            | o-xylene                          | mg/kg | 0.1 | <0.1     | <0.1      | 200        | 0     |
|              |              | Polycyclic | Naphthalene                       | mg/kg | 0.1 | <0.1     | <0.1      | 200        | 0     |
|              |              | Surrogates | Dibromofluoromethane (Surrogate)  | mg/kg | -   | 4.0      | 4.6       | 50         | 14    |
|              |              | · ·        | d4-1,2-dichloroethane (Surrogate) | mg/kg | -   | 4.8      | 4.6       | 50         | 4     |
|              |              |            | d8-toluene (Surrogate)            | mg/kg | -   | 5.2      | 4.7       | 50         | 10    |
|              |              |            | Bromofluorobenzene (Surrogate)    | mg/kg | -   | 5.4      | 5.5       | 50         | 2     |
|              |              | Totals     | Total Xylenes*                    | mg/kg | 0.3 | <0.3     | <0.3      | 200        | 0     |
|              |              |            | Total BTEX*                       | mg/kg | 0.6 | <0.6     | <0.6      | 200        | 0     |
| SE139362.001 | LB077628.023 | Monocyclic | Benzene                           | mg/kg | 0.1 | 0        | 0         | 200        | 0     |
|              |              | Aromatic   | Toluene                           | mg/kg | 0.1 | 0        | 0         | 200        | 0     |
|              |              |            | Ethylbenzene                      | mg/kg | 0.1 | 0        | 0         | 200        | 0     |
|              |              |            | m/p-xylene                        | mg/kg | 0.2 | 0        | 0         | 200        | 0     |
|              |              |            | o-xylene                          | mg/kg | 0.1 | 0        | 0         | 200        | 0     |
|              |              | Polycyclic | Naphthalene                       | mg/kg | 0.1 | 0        | 0         | 200        | 0     |
|              |              | Surrogates | Dibromofluoromethane (Surrogate)  | mg/kg | -   | 4.82     | 5.09      | 50         | 5     |
|              |              | 5          | d4-1,2-dichloroethane (Surrogate) | mg/kg | _   | 4.79     | 5.2       | 50         | 8     |
|              |              |            | d8-toluene (Surrogate)            | mg/kg | _   | 4.83     | 4.92      | 50         | 2     |
|              |              |            | Bromofluorobenzene (Surrogate)    | mg/kg | _   | 5.39     | 5.51      | 50         | 2     |
|              |              | Totals     | Total Xylenes*                    | mg/kg | 0.3 | 0        | 0         | 200        | 0     |
|              |              |            | Total BTEX*                       | mg/kg | 0.6 | 0        | 0         | 200        | 0     |
|              |              |            |                                   |       | 5.0 |          | •         |            |       |

# Volatile Petroleum Hydrocarbons in Soil

# Method: ME-(AU)-[ENV]AN433/AN434/AN410

|              | •            |             |                                   |       |     |          |           | -          |       |
|--------------|--------------|-------------|-----------------------------------|-------|-----|----------|-----------|------------|-------|
| Original     | Duplicate    |             | Parameter                         | Units | LOR | Original | Duplicate | Criteria % | RPD % |
| SE139332,009 | LB077627.014 |             | TRH C6-C10                        | mg/kg | 25  | <25      | <25       | 200        | 0     |
|              |              |             | TRH C6-C9                         | mg/kg | 20  | <20      | <20       | 200        | 0     |
|              |              | Surrogates  | Dibromofluoromethane (Surrogate)  | mg/kg | -   | 3.9      | 4.2       | 30         | 7     |
|              |              |             | d4-1,2-dichloroethane (Surrogate) | mg/kg | -   | 4.9      | 5.1       | 30         | 4     |
|              |              |             | d8-toluene (Surrogate)            | mg/kg | -   | 4.3      | 4.3       | 30         | 1     |
|              |              |             | Bromofluorobenzene (Surrogate)    | mg/kg | -   | 4.6      | 5.3       | 30         | 15    |
|              |              | VPH F Bands | Benzene (F0)                      | mg/kg | 0.1 | <0.1     | <0.1      | 200        | 0     |
|              |              |             | TRH C6-C10 minus BTEX (F1)        | mg/kg | 25  | <25      | <25       | 200        | 0     |
| SE139332.027 | LB077627.025 |             | TRH C6-C10                        | mg/kg | 25  | <25      | <25       | 200        | 0     |
|              |              |             | TRH C6-C9                         | mg/kg | 20  | <20      | <20       | 200        | 0     |
|              |              |             |                                   |       |     |          |           |            |       |

22/5/2015 Page 25 of 35







Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

#### Volatile Petroleum Hydrocarbons in Soil (continued)

#### Method: ME-(AU)-[ENV]AN433/AN434/AN410

| voidule i eu oleum | i mydrocarbons in So | ii (oorianada) |                                   |       |     | Wiedlich | a. ME-(AO)-[i | =INV JAIN433/AI | .440-8744-11 |
|--------------------|----------------------|----------------|-----------------------------------|-------|-----|----------|---------------|-----------------|--------------|
| Original           | Duplicate            |                | Parameter                         | Units | LOR | Original | Duplicate     | Criteria %      | RPD %        |
| SE139332.027       | LB077627.025         | Surrogates     | Dibromofluoromethane (Surrogate)  | mg/kg | -   | 4.2      | 3.5           | 30              | 19           |
|                    |                      |                | d4-1,2-dichloroethane (Surrogate) | mg/kg | -   | 5.0      | 4.2           | 30              | 16           |
|                    |                      |                | d8-toluene (Surrogate)            | mg/kg | -   | 5.5      | 4.6           | 30              | 19           |
|                    |                      |                | Bromofluorobenzene (Surrogate)    | mg/kg | -   | 5.4      | 4.5           | 30              | 19           |
|                    |                      | VPH F Bands    | Benzene (F0)                      | mg/kg | 0.1 | <0.1     | <0.1          | 200             | 0            |
|                    |                      |                | TRH C6-C10 minus BTEX (F1)        | mg/kg | 25  | <25      | <25           | 200             | 0            |
| SE139333.012       | LB077628.014         |                | TRH C6-C10                        | mg/kg | 25  | <25      | <25           | 200             | 0            |
|                    |                      |                | TRH C6-C9                         | mg/kg | 20  | <20      | <20           | 200             | 0            |
|                    |                      | Surrogates     | Dibromofluoromethane (Surrogate)  | mg/kg | -   | 4.0      | 4.6           | 30              | 14           |
|                    |                      |                | d4-1,2-dichloroethane (Surrogate) | mg/kg | -   | 4.8      | 4.6           | 30              | 4            |
|                    |                      |                | d8-toluene (Surrogate)            | mg/kg | -   | 5.2      | 4.7           | 30              | 10           |
|                    |                      |                | Bromofluorobenzene (Surrogate)    | mg/kg | -   | 5.4      | 5.5           | 30              | 2            |
|                    |                      | VPH F Bands    | Benzene (F0)                      | mg/kg | 0.1 | <0.1     | <0.1          | 200             | 0            |
|                    |                      |                | TRH C6-C10 minus BTEX (F1)        | mg/kg | 25  | <25      | <25           | 200             | 0            |
| SE139362.001       | LB077628.023         |                | TRH C6-C10                        | mg/kg | 25  | 0        | 0             | 200             | 0            |
|                    |                      |                | TRH C6-C9                         | mg/kg | 20  | 0        | 0             | 200             | 0            |
|                    |                      | Surrogates     | Dibromofluoromethane (Surrogate)  | mg/kg | -   | 4.82     | 5.09          | 30              | 5            |
|                    |                      |                | d4-1,2-dichloroethane (Surrogate) | mg/kg | -   | 4.79     | 5.2           | 30              | 8            |
|                    |                      |                | d8-toluene (Surrogate)            | mg/kg | -   | 4.83     | 4.92          | 30              | 2            |
|                    |                      |                | Bromofluorobenzene (Surrogate)    | mg/kg | -   | 5.39     | 5.51          | 30              | 2            |
|                    |                      | VPH F Bands    | Benzene (F0)                      | mg/kg | 0.1 | 0        | 0             | 200             | 0            |
|                    |                      |                | TRH C6-C10 minus BTEX (F1)        | mg/kg | 25  | 0        | 0             | 200             | 0            |

22/5/2015 Page 26 of 35



Surrogates

PAH (Polynuclear Aromatic Hydrocarbons) in Soil

Sample Number

2-fluorobiphenyl (Surrogate)

d14-p-terphenyl (Surrogate)

# LABORATORY CONTROL SAMPLES

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

| xchangeable Ca                                   | ntions and Cation E | Exchange Capacity (CEC/ESP/SAR)           |                |            |            | I                  | Method: ME-(A                      | U)-[ENV]AN1                         |
|--------------------------------------------------|---------------------|-------------------------------------------|----------------|------------|------------|--------------------|------------------------------------|-------------------------------------|
| Sample Numbe                                     | r                   | Parameter                                 | Units          | LOR        | Result     | Expected           | Criteria %                         |                                     |
| LB077697.002                                     |                     | Exchangeable Sodium, Na                   | mg/kg          | 2          | NA         | 160                | 80 - 120                           | 113                                 |
|                                                  |                     | Exchangeable Potassium, K                 | mg/kg          | 2          | NA         | 330                | 80 - 120                           | 96                                  |
|                                                  |                     | Exchangeable Calcium, Ca                  | mg/kg          | 2          | NA         | 4347               | 80 - 120                           | 105                                 |
|                                                  |                     | Exchangeable Magnesium, Mg                | mg/kg          | 2          | NA         | 1578               | 80 - 120                           | 96                                  |
| lercury in Soil                                  |                     |                                           |                |            |            |                    | Method: ME-(A                      |                                     |
| Sample Numbe                                     | r                   | Parameter                                 | Units          | LOR        | Result     | Expected           |                                    | Recovery                            |
| LB077666.002                                     |                     | Mercury                                   | mg/kg          | 0.01       | 0.21       | 0.2                | 70 - 130                           | 105                                 |
| LB077667.002                                     |                     | Mercury                                   | mg/kg          | 0.01       | 0.21       | 0.2                | 70 - 130                           | 104                                 |
| LB077668.002                                     |                     | Mercury                                   | mg/kg          | 0.01       | 0.22       | 0.2                | 70 - 130                           | 110                                 |
| OC Pesticides in                                 |                     |                                           |                |            |            |                    | ME-(AU)-[EN\                       |                                     |
| Sample Numbe                                     | r                   | Parameter                                 | Units          | LOR        | Result     | Expected           |                                    | Recovery                            |
| LB077544.002                                     |                     | Heptachlor                                | mg/kg          | 0.1        | 0.2        | 0.2                | 60 - 140                           | 112                                 |
|                                                  |                     | Aldrin                                    | mg/kg          | 0.1        | 0.2        | 0.2                | 60 - 140                           | 111                                 |
|                                                  |                     | Delta BHC                                 | mg/kg          | 0.1        | 0.2        | 0.2                | 60 - 140                           | 106                                 |
|                                                  |                     | Dieldrin                                  | mg/kg          | 0.2        | 0.2        | 0.2                | 60 - 140                           | 105<br>115                          |
|                                                  |                     | Endrin<br>p,p'-DDT                        | mg/kg<br>mg/kg | 0.2        | 0.2        | 0.2                | 60 - 140<br>60 - 140               | 96                                  |
|                                                  | Surrogates          | Tetrachloro-m-xylene (TCMX) (Surrogate)   | mg/kg          | - U.1      | 0.14       | 0.2                | 40 - 130                           | 96                                  |
| LB077546.002                                     | Carrogatos          | Heptachlor                                | mg/kg          | 0.1        | 0.2        | 0.2                | 60 - 140                           | 97                                  |
|                                                  |                     | Aldrin                                    | mg/kg          | 0.1        | 0.2        | 0.2                | 60 - 140                           | 97                                  |
|                                                  |                     | Delta BHC                                 | mg/kg          | 0.1        | 0.2        | 0.2                | 60 - 140                           | 92                                  |
|                                                  |                     | Dieldrin                                  | mg/kg          | 0.2        | <0.2       | 0.2                | 60 - 140                           | 95                                  |
|                                                  |                     | Endrin                                    | mg/kg          | 0.2        | <0.2       | 0.2                | 60 - 140                           | 100                                 |
|                                                  |                     | p,p'-DDT                                  | mg/kg          | 0.1        | 0.2        | 0.2                | 60 - 140                           | 98                                  |
|                                                  | Surrogates          | Tetrachloro-m-xylene (TCMX) (Surrogate)   | mg/kg          | -          | 0.13       | 0,15               | 40 - 130                           | 83                                  |
| OC Pesticides in                                 | Water               |                                           |                |            |            | Method:            | ME-(AU)-[EN\                       | /JAN400/AN4                         |
| Sample Numbe                                     | r                   | Parameter                                 | Units          | LOR        | Result     | Expected           | Criteria %                         | Recovery '                          |
| LB077619.002                                     |                     | Delta BHC                                 | μg/L           | 0.1        | 0.2        | 0.2                | 60 - 140                           | 83                                  |
|                                                  |                     | Heptachlor                                | μg/L           | 0.1        | 0.2        | 0.2                | 60 - 140                           | 83                                  |
|                                                  |                     | Aldrin                                    | μg/L           | 0.1        | 0.2        | 0.2                | 60 - 140                           | 81                                  |
|                                                  |                     | Dieldrin                                  | μg/L           | 0.1        | 0.2        | 0.2                | 60 - 140                           | 86                                  |
|                                                  |                     | Endrin                                    | μg/L           | 0.1        | 0.2        | 0.2                | 60 - 140                           | 90                                  |
|                                                  |                     | p,p'-DDT                                  | μg/L           | 0.1        | 0.2        | 0.2                | 60 - 140                           | 87                                  |
|                                                  | Surrogates          | Tetrachloro-m-xylene (TCMX) (Surrogate)   | μg/L           | -          | 0.11       | 0.15               | 40 - 130                           | 72                                  |
| OP Pesticides in                                 |                     |                                           |                |            |            | Method:            | ME-(AU)-[EN\                       | /JAN400/AN4                         |
| Sample Numbe                                     | r                   | Parameter                                 | Units          | LOR        | Result     | Expected           | Criteria %                         | Recovery '                          |
| LB077544.002                                     |                     | Dichlorvos                                | mg/kg          | 0.5        | 2.0        | 2                  | 60 - 140                           | 101                                 |
|                                                  |                     | Diazinon (Dimpylate)                      | mg/kg          | 0.5        | 2.0        | 2                  | 60 - 140                           | 98                                  |
|                                                  |                     | Chlorpyrifos (Chlorpyrifos Ethyl)  Ethion | mg/kg          | 0.2        | 2.0        | 2                  | 60 - 140<br>60 - 140               | 98<br>76                            |
|                                                  | Surrogates          | 2-fluorobiphenyl (Surrogate)              | mg/kg<br>mg/kg | - 0.2      | 0.5        | 0.5                | 40 - 130                           | 94                                  |
|                                                  | Surrogates          | d14-p-terphenyl (Surrogate)               | mg/kg          | -          | 0.6        | 0.5                | 40 - 130                           | 116                                 |
| LB077546.002                                     |                     | Dichlorvos                                | mg/kg          | 0.5        | 2.0        | 2                  | 60 - 140                           | 101                                 |
|                                                  |                     | Diazinon (Dimpylate)                      | mg/kg          | 0.5        | 2.0        | 2                  | 60 - 140                           | 98                                  |
|                                                  |                     | Chlorpyrifos (Chlorpyrifos Ethyl)         | mg/kg          | 0.2        | 2.0        | 2                  | 60 - 140                           | 98                                  |
|                                                  |                     | Ethion                                    | mg/kg          | 0.2        | 1.5        | 2                  | 60 - 140                           | 76                                  |
|                                                  | Surrogates          | 2-fluorobiphenyl (Surrogate)              | mg/kg          | -          | 0.5        | 0.5                | 40 - 130                           | 94                                  |
|                                                  |                     | d14-p-terphenyl (Surrogate)               | mg/kg          | -          | 0.6        | 0.5                | 40 - 130                           | 116                                 |
|                                                  |                     |                                           |                |            |            |                    |                                    |                                     |
| P Pesticides in                                  | Water               |                                           |                |            |            | Method:            | ME-(AU)-[EN\                       | /JAN400/AN4                         |
|                                                  |                     | Parameter                                 | Units          | LOR        | Result     | Expected           |                                    |                                     |
| Sample Numbe                                     |                     | Parameter<br>Dichlorvos                   | Units<br>μg/L  | LOR<br>0.5 | Result     |                    |                                    | Recovery <sup>o</sup>               |
| Sample Numbe                                     |                     |                                           |                |            |            | Expected           | Criteria %                         | Recovery <sup>6</sup>               |
| Sample Numbe                                     |                     | Dichlorvos                                | μg/L           | 0.5        | 9.0        | Expected<br>8      | Criteria %<br>60 - 140             | Recovery<br>113                     |
| DP Pesticides in<br>Sample Numbe<br>LB077619.002 |                     | Dichlorvos Diazinon (Dimpylate)           | µg/L<br>µg/L   | 0.5<br>0.5 | 9.0<br>9.6 | Expected<br>8<br>8 | Criteria %<br>60 - 140<br>60 - 140 | Recovery <sup>6</sup><br>113<br>119 |

22/5/2015 Page 27 of 35

0.4

0.5

μg/L

μg/L

0.5

0.5

40 - 130

40 - 130

Method: ME-(AU)-[ENV]AN420

78

98





# LABORATORY CONTROL SAMPLES

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

#### PAH (Polynuclear Aromatic Hydrocarbons) in Soil (continued)

#### Method: ME-(AU)-[ENV]AN420

| Sample Number |            | Parameter                    | Units | LOR | Result | Expected | Criteria % | Recovery % |
|---------------|------------|------------------------------|-------|-----|--------|----------|------------|------------|
| LB077544.002  |            | Naphthalene                  | mg/kg | 0.1 | 4.7    | 4        | 60 - 140   | 118        |
|               |            | Acenaphthylene               | mg/kg | 0.1 | 4.8    | 4        | 60 - 140   | 120        |
|               |            | Acenaphthene                 | mg/kg | 0.1 | 5.4    | 4        | 60 - 140   | 135        |
|               |            | Phenanthrene                 | mg/kg | 0.1 | 4.9    | 4        | 60 - 140   | 122        |
|               |            | Anthracene                   | mg/kg | 0.1 | 4.9    | 4        | 60 - 140   | 121        |
|               |            | Fluoranthene                 | mg/kg | 0.1 | 4.7    | 4        | 60 - 140   | 118        |
|               |            | Pyrene                       | mg/kg | 0.1 | 5.0    | 4        | 60 - 140   | 125        |
|               |            | Benzo(a)pyrene               | mg/kg | 0.1 | 3.9    | 4        | 60 - 140   | 97         |
|               | Surrogates | d5-nitrobenzene (Surrogate)  | mg/kg | -   | 0.5    | 0.5      | 40 - 130   | 92         |
|               |            | 2-fluorobiphenyl (Surrogate) | mg/kg | -   | 0.5    | 0.5      | 40 - 130   | 94         |
|               |            | d14-p-terphenyl (Surrogate)  | mg/kg | -   | 0.6    | 0.5      | 40 - 130   | 116        |
| LB077546.002  |            | Naphthalene                  | mg/kg | 0.1 | 4.4    | 4        | 60 - 140   | 109        |
|               |            | Acenaphthylene               | mg/kg | 0.1 | 4.4    | 4        | 60 - 140   | 111        |
|               |            | Acenaphthene                 | mg/kg | 0.1 | 4.7    | 4        | 60 - 140   | 117        |
|               |            | Phenanthrene                 | mg/kg | 0.1 | 4.5    | 4        | 60 - 140   | 112        |
|               |            | Anthracene                   | mg/kg | 0.1 | 4.4    | 4        | 60 - 140   | 110        |
|               |            | Fluoranthene                 | mg/kg | 0.1 | 4.0    | 4        | 60 - 140   | 100        |
|               |            | Pyrene                       | mg/kg | 0.1 | 4.4    | 4        | 60 - 140   | 111        |
|               |            | Benzo(a)pyrene               | mg/kg | 0.1 | 4.3    | 4        | 60 - 140   | 109        |
|               | Surrogates | d5-nitrobenzene (Surrogate)  | mg/kg | -   | 0.4    | 0.5      | 40 - 130   | 88         |
|               |            | 2-fluorobiphenyl (Surrogate) | mg/kg | -   | 0.5    | 0.5      | 40 - 130   | 92         |
|               |            | d14-p-terphenyl (Surrogate)  | mg/kg | -   | 0.5    | 0.5      | 40 - 130   | 106        |

#### PAH (Polynuclear Aromatic Hydrocarbons) in Water

#### Method: ME-(AU)-[ENV]AN420

| Sample Number | Parameter                    | Units | LOR | Result | Expected | Criteria %      | Recovery % |
|---------------|------------------------------|-------|-----|--------|----------|-----------------|------------|
| LB077619.002  | Naphthalene                  | μg/L  | 0.1 | 46     | 40       | 60 - 140        | 115        |
|               | Acenaphthylene               | μg/L  | 0.1 | 45     | 40       | 60 - 140        | 113        |
|               | Acenaphthene                 | μg/L  | 0.1 | 48     | 40       | 60 - 140        | 120        |
|               | Phenanthrene                 | μg/L  | 0.1 | 48     | 40       | 60 - 140        | 121        |
|               | Anthracene                   | μg/L  | 0.1 | 48     | 40       | 60 - 140        | 119        |
|               | Fluoranthene                 | μg/L  | 0.1 | 44     | 40       | 60 - 140        | 111        |
|               | Pyrene                       | μg/L  | 0.1 | 48     | 40       | 60 - 140        | 121        |
|               | Benzo(a)pyrene               | μg/L  | 0.1 | 51     | 40       | 60 - 140        | 127        |
| Surrogates    | d5-nitrobenzene (Surrogate)  | μg/L  | -   | 0.5    | 0.5      | 40 <b>-</b> 130 | 92         |
|               | 2-fluorobiphenyl (Surrogate) | μg/L  | -   | 0.5    | 0.5      | 40 - 130        | 96         |
|               | d14-p-terphenyl (Surrogate)  | μg/L  | -   | 0.6    | 0.5      | 40 - 130        | 110        |

#### PCBs in Soil

## Method: ME-(AU)-[ENV]AN400/AN420

| Sample Number | Parameter     | Units | LOR | Result | Expected | Criteria % | Recovery % |
|---------------|---------------|-------|-----|--------|----------|------------|------------|
| LB077544.002  | Arochlor 1260 | mg/kg | 0.2 | 0.4    | 0.4      | 60 - 140   | 105        |
| LB077546.002  | Arochlor 1260 | mg/kg | 0.2 | 0.4    | 0.4      | 60 - 140   | 108        |

# PCBs in Water

# Method: ME-(AU)-[ENV]AN400/AN420

| Sample Number | Parameter     | Units | LOR | Result | Expected | Criteria % | Recovery % |
|---------------|---------------|-------|-----|--------|----------|------------|------------|
| LB077619.002  | Arochlor 1260 | μg/L  | 1   | <1     | 0.4      | 60 - 140   | 112        |

#### pH in soil (1:5)

## Method: ME-(AU)-[ENV]AN101

| Sample Number | Parameter | Units    | LOR | Result | Expected | Criteria % | Recovery % |
|---------------|-----------|----------|-----|--------|----------|------------|------------|
| LB077736.001  | рН        | pH Units | _   | 7.4    | 7.415    | 98 - 102   | 100        |

# Total Recoverable Metals in Soil by ICPOES from EPA 200.8 Digest

# Method: ME-(AU)-[ENV]AN040/AN320

| Sample Number | Parameter    | Units | LOR | Result | Expected | Criteria % | Recovery % |
|---------------|--------------|-------|-----|--------|----------|------------|------------|
| LB077689.002  | Arsenic, As  | mg/kg | 3   | 48     | 50       | 80 - 120   | 97         |
|               | Cadmium, Cd  | mg/kg | 0.3 | 49     | 50       | 80 - 120   | 97         |
|               | Chromium, Cr | mg/kg | 0.3 | 47     | 50       | 80 - 120   | 93         |
|               | Copper, Cu   | mg/kg | 0.5 | 47     | 50       | 80 - 120   | 93         |
|               | Lead, Pb     | mg/kg | 1   | 48     | 50       | 80 - 120   | 96         |
|               | Nickel, Ni   | mg/kg | 0.5 | 48     | 50       | 80 - 120   | 97         |

22/5/2015 Page 28 of 35



# LABORATORY CONTROL SAMPLES

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

#### Total Recoverable Metals in Soil by ICPOES from EPA 200.8 Digest (continued)

#### Method: ME-(AU)-[ENV]AN040/AN320

| Sample Number | Parameter    | Units | LOR | Result | Expected | Criteria %      | Recovery % |
|---------------|--------------|-------|-----|--------|----------|-----------------|------------|
| LB077689.002  | Zinc, Zn     | mg/kg | 0.5 | 53     | 50       | 80 <b>-</b> 120 | 107        |
| LB077691.002  | Arsenic, As  | mg/kg | 3   | 46     | 50       | 80 - 120        | 92         |
|               | Cadmium, Cd  | mg/kg | 0.3 | 46     | 50       | 80 - 120        | 93         |
|               | Chromium, Cr | mg/kg | 0.3 | 45     | 50       | 80 - 120        | 89         |
|               | Copper, Cu   | mg/kg | 0.5 | 45     | 50       | 80 - 120        | 89         |
|               | Lead, Pb     | mg/kg | 1   | 46     | 50       | 80 - 120        | 93         |
|               | Nickel, Ni   | mg/kg | 0.5 | 47     | 50       | 80 - 120        | 93         |
|               | Zinc, Zn     | mg/kg | 0.5 | 49     | 50       | 80 - 120        | 98         |
| LB077692.002  | Arsenic, As  | mg/kg | 3   | 46     | 50       | 80 - 120        | 92         |
|               | Cadmium, Cd  | mg/kg | 0.3 | 47     | 50       | 80 - 120        | 94         |
|               | Chromium, Cr | mg/kg | 0.3 | 45     | 50       | 80 - 120        | 90         |
|               | Copper, Cu   | mg/kg | 0.5 | 46     | 50       | 80 - 120        | 91         |
|               | Lead, Pb     | mg/kg | 1   | 47     | 50       | 80 - 120        | 93         |
|               | Nickel, Ni   | mg/kg | 0.5 | 47     | 50       | 80 - 120        | 94         |
|               | Zinc, Zn     | mg/kg | 0.5 | 48     | 50       | 80 - 120        | 95         |

# Trace Metals (Dissolved) in Water by ICPMS

# Method: ME-(AU)-[ENV]AN318

| Sample Number | Parameter    | Units | LOR | Result | Expected | Criteria % | Recovery % |
|---------------|--------------|-------|-----|--------|----------|------------|------------|
| LB077648,002  | Arsenic, As  | μg/L  | 1   | 20     | 20       | 80 - 120   | 100        |
|               | Cadmium, Cd  | μg/L  | 0.1 | 20     | 20       | 80 - 120   | 102        |
|               | Chromium, Cr | μg/L  | 1   | 20     | 20       | 80 - 120   | 101        |
|               | Copper, Cu   | μg/L  | 1   | 21     | 20       | 80 - 120   | 103        |
|               | Lead, Pb     | μg/L  | 1   | 20     | 20       | 80 - 120   | 101        |
|               | Nickel, Ni   | μg/L  | 1   | 20     | 20       | 80 - 120   | 102        |
|               | Zinc, Zn     | μg/L  | 5   | 21     | 20       | 80 - 120   | 105        |

#### TRH (Total Recoverable Hydrocarbons) in Soil

#### Method: ME-(AU)-[ENV]AN403

| Sample Number |             | Parameter         | Units | LOR | Result | Expected | Criteria % | Recovery % |
|---------------|-------------|-------------------|-------|-----|--------|----------|------------|------------|
| LB077544.002  |             | TRH C10-C14       | mg/kg | 20  | 33     | 40       | 60 - 140   | 83         |
|               |             | TRH C15-C28       | mg/kg | 45  | <45    | 40       | 60 - 140   | 85         |
|               |             | TRH C29-C36       | mg/kg | 45  | <45    | 40       | 60 - 140   | 83         |
|               | TRH F Bands | TRH >C10-C16 (F2) | mg/kg | 25  | 33     | 40       | 60 - 140   | 83         |
|               |             | TRH >C16-C34 (F3) | mg/kg | 90  | <90    | 40       | 60 - 140   | 85         |
|               |             | TRH >C34-C40 (F4) | mg/kg | 120 | <120   | 20       | 60 - 140   | 85         |
| LB077546.002  |             | TRH C10-C14       | mg/kg | 20  | 39     | 40       | 60 - 140   | 98         |
|               |             | TRH C15-C28       | mg/kg | 45  | <45    | 40       | 60 - 140   | 95         |
|               |             | TRH C29-C36       | mg/kg | 45  | <45    | 40       | 60 - 140   | 80         |
|               | TRH F Bands | TRH >C10-C16 (F2) | mg/kg | 25  | 38     | 40       | 60 - 140   | 95         |
|               |             | TRH >C16-C34 (F3) | mg/kg | 90  | <90    | 40       | 60 - 140   | 90         |
|               |             | TRH >C34-C40 (F4) | mg/kg | 120 | <120   | 20       | 60 - 140   | 80         |

# TRH (Total Recoverable Hydrocarbons) in Water

## Method: ME-(AU)-[ENV]AN403

| Sample Number |             | Parameter         | Units | LOR | Result | Expected | Criteria % | Recovery % |
|---------------|-------------|-------------------|-------|-----|--------|----------|------------|------------|
| LB077619.002  |             | TRH C10-C14       | μg/L  | 50  | 920    | 1200     | 60 - 140   | 77         |
|               |             | TRH C15-C28       | μg/L  | 200 | 1100   | 1200     | 60 - 140   | 94         |
|               |             | TRH C29-C36       | μg/L  | 200 | 1100   | 1200     | 60 - 140   | 94         |
|               | TRH F Bands | TRH >C10-C16 (F2) | μg/L  | 60  | 1000   | 1200     | 60 - 140   | 84         |
|               |             | TRH >C16-C34 (F3) | μg/L  | 500 | 1200   | 1200     | 60 - 140   | 96         |
|               |             | TRH >C34-C40 (F4) | μg/L  | 500 | 590    | 600      | 60 - 140   | 99         |

# VOC's in Soil

# Method: ME-(AU)-[ENV]AN433/AN434

| Sample Numbe | r          | Parameter                         | Units | LOR | Result | Expected | Criteria % | Recovery % |
|--------------|------------|-----------------------------------|-------|-----|--------|----------|------------|------------|
| LB077627.002 | Monocyclic | Benzene                           | mg/kg | 0.1 | 2.8    | 2.9      | 60 - 140   | 96         |
|              | Aromatic   | Toluene                           | mg/kg | 0.1 | 2.5    | 2.9      | 60 - 140   | 87         |
|              |            | Ethylbenzene                      | mg/kg | 0.1 | 2.3    | 2.9      | 60 - 140   | 78         |
|              |            | m/p-xylene                        | mg/kg | 0.2 | 4.4    | 5.8      | 60 - 140   | 76         |
|              |            | o-xylene                          | mg/kg | 0.1 | 2.0    | 2.9      | 60 - 140   | 68         |
|              | Surrogates | Dibromofluoromethane (Surrogate)  | mg/kg | -   | 3.5    | 5        | 60 - 140   | 70         |
|              |            | d4-1,2-dichloroethane (Surrogate) | mg/kg | -   | 4.4    | 5        | 60 - 140   | 88         |
|              |            | d8-toluene (Surrogate)            | mg/kg | -   | 4.7    | 5        | 60 - 140   | 95         |
|              |            | Bromofluorobenzene (Surrogate)    | mg/kg | -   | 4.9    | 5        | 60 - 140   | 98         |
| LB077628.002 | Monocyclic | Benzene                           | mg/kg | 0.1 | 2.8    | 2.9      | 60 - 140   | 97         |
|              | Aromatic   | Toluene                           | ma/ka | 0.1 | 2.5    | 2.9      | 60 - 140   | 84         |

22/5/2015 Page 29 of 35





# LABORATORY CONTROL SAMPLES

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

| VOC's in Soil (continued) | Method: ME_/ALI\JEN\/IAN433/AN434 |
|---------------------------|-----------------------------------|

| Sample Number |            | Parameter                         | Units | LOR | Result | Expected | Criteria % | Recovery % |
|---------------|------------|-----------------------------------|-------|-----|--------|----------|------------|------------|
| LB077628.002  | Monocyclic | Ethylbenzene                      | mg/kg | 0.1 | 2.1    | 2.9      | 60 - 140   | 72         |
|               | Aromatic   | m/p-xylene                        | mg/kg | 0.2 | 4.4    | 5.8      | 60 - 140   | 76         |
|               |            | o-xylene                          | mg/kg | 0.1 | 2.1    | 2.9      | 60 - 140   | 73         |
|               | Surrogates | Dibromofluoromethane (Surrogate)  | mg/kg | -   | 5.2    | 5        | 60 - 140   | 105        |
|               |            | d4-1,2-dichloroethane (Surrogate) | mg/kg | -   | 5.4    | 5        | 60 - 140   | 108        |
|               |            | d8-toluene (Surrogate)            | mg/kg | -   | 6.0    | 5        | 60 - 140   | 119        |
|               |            | Bromofluorobenzene (Surrogate)    | mg/kg | -   | 6.2    | 5        | 60 - 140   | 123        |

#### VOCs in Water Method: ME-(AU)-[ENV]AN433/AN434

| Sample Number |            | Parameter                         | Units | LOR | Result | Expected | Criteria % | Recovery % |
|---------------|------------|-----------------------------------|-------|-----|--------|----------|------------|------------|
| LB077578.002  | Monocyclic | Benzene                           | μg/L  | 0.5 | 57     | 45.45    | 60 - 140   | 125        |
|               | Aromatic   | Toluene                           | μg/L  | 0.5 | 56     | 45.45    | 60 - 140   | 123        |
|               |            | Ethylbenzene                      | μg/L  | 0.5 | 59     | 45.45    | 60 - 140   | 130        |
|               |            | m/p-xylene                        | μg/L  | 1   | 100    | 90.9     | 60 - 140   | 113        |
|               |            | o-xylene                          | μg/L  | 0.5 | 56     | 45.45    | 60 - 140   | 123        |
|               | Surrogates | Dibromofluoromethane (Surrogate)  | μg/L  | -   | 5.0    | 5        | 60 - 140   | 100        |
|               |            | d4-1,2-dichloroethane (Surrogate) | μg/L  | -   | 5.1    | 5        | 60 - 140   | 102        |
|               |            | d8-toluene (Surrogate)            | μg/L  | -   | 5.4    | 5        | 60 - 140   | 108        |
|               |            | Bromofluorobenzene (Surrogate)    | μg/L  | -   | 5.6    | 5        | 60 - 140   | 111        |

# Volatile Petroleum Hydrocarbons in Soil

#### Method: ME-(AU)-[ENV]AN433/AN434/AN410

| Sample Number |             | Parameter                         | Units | LOR | Result | Expected | Criteria % | Recovery % |
|---------------|-------------|-----------------------------------|-------|-----|--------|----------|------------|------------|
| LB077627.002  |             | TRH C6-C10                        | mg/kg | 25  | <25    | 24.65    | 60 - 140   | 88         |
|               |             | TRH C6-C9                         | mg/kg | 20  | <20    | 23.2     | 60 - 140   | 85         |
|               | Surrogates  | Dibromofluoromethane (Surrogate)  | mg/kg | -   | 3.5    | 5        | 60 - 140   | 70         |
|               |             | d4-1,2-dichloroethane (Surrogate) | mg/kg | -   | 4.4    | 5        | 60 - 140   | 88         |
|               |             | d8-toluene (Surrogate)            | mg/kg | -   | 4.7    | 5        | 60 - 140   | 95         |
|               |             | Bromofluorobenzene (Surrogate)    | mg/kg | -   | 4.9    | 5        | 60 - 140   | 98         |
|               | VPH F Bands | TRH C6-C10 minus BTEX (F1)        | mg/kg | 25  | <25    | 7.25     | 60 - 140   | 107        |
| LB077628.002  |             | TRH C6-C10                        | mg/kg | 25  | <25    | 24.65    | 60 - 140   | 88         |
|               |             | TRH C6-C9                         | mg/kg | 20  | <20    | 23.2     | 60 - 140   | 81         |
|               | Surrogates  | Dibromofluoromethane (Surrogate)  | mg/kg | -   | 5.2    | 5        | 60 - 140   | 105        |
|               |             | d4-1,2-dichloroethane (Surrogate) | mg/kg | -   | 5.4    | 5        | 60 - 140   | 108        |
|               |             | d8-toluene (Surrogate)            | mg/kg | -   | 6.0    | 5        | 60 - 140   | 119        |
|               |             | Bromofluorobenzene (Surrogate)    | mg/kg | -   | 6.2    | 5        | 60 - 140   | 123        |
|               | VPH F Bands | TRH C6-C10 minus BTEX (F1)        | mg/kg | 25  | <25    | 7.25     | 60 - 140   | 107        |

#### Volatile Petroleum Hydrocarbons in Water

#### Method: ME-(AU)-[ENV]AN433/AN434/AN410

| Sample Number |             | Parameter                         | Units | LOR | Result | Expected | Criteria % | Recovery % |
|---------------|-------------|-----------------------------------|-------|-----|--------|----------|------------|------------|
| LB077578.002  |             | TRH C6-C10                        | μg/L  | 50  | 940    | 946.63   | 60 - 140   | 100        |
|               |             | TRH C6-C9                         | μg/L  | 40  | 720    | 818.71   | 60 - 140   | 88         |
|               | Surrogates  | Dibromofluoromethane (Surrogate)  | μg/L  | -   | 5.0    | 5        | 60 - 140   | 100        |
|               |             | d4-1,2-dichloroethane (Surrogate) | μg/L  | -   | 5.1    | 5        | 60 - 140   | 102        |
|               |             | d8-toluene (Surrogate)            | µg/L  | -   | 5.4    | 5        | 60 - 140   | 108        |
|               |             | Bromofluorobenzene (Surrogate)    | µg/L  | -   | 5.6    | 5        | 60 - 140   | 111        |
|               | VPH F Bands | TRH C6-C10 minus BTEX (F1)        | μα/L  | 50  | 610    | 639,67   | 60 - 140   | 96         |

22/5/2015 Page 30 of 35



# **MATRIX SPIKES**

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

#### Mercury (dissolved) in Water

#### Method: ME-(AU)-[ENV]AN311/AN312

| QC Sample    | Sample Number | Parameter | Units | LOR    | Result | Original | Spike | Recovery% |
|--------------|---------------|-----------|-------|--------|--------|----------|-------|-----------|
| SE139161.017 | LB077728.004  | Mercury   | mg/L  | 0.0001 | 0.0082 | < 0.0001 | 0.008 | 103       |

#### Mercury in Soil

#### Method: ME-(AU)-[ENV]AN312

| QC Sample    | Sample Number | Parameter | Units | LOR  | Result | Origina <b>l</b> | Spike | Recovery% |
|--------------|---------------|-----------|-------|------|--------|------------------|-------|-----------|
| SE139330.024 | LB077666.004  | Mercury   | mg/kg | 0.01 | 0.20   | 0.01174385506    | 0.2   | 93        |
| SE139332.006 | LB077667.004  | Mercury   | mg/kg | 0.01 | 0.20   | 0.02             | 0.2   | 93        |
| SE139332.028 | LB077668.004  | Mercury   | mg/kg | 0.01 | 0.28   | 0.05             | 0.2   | 113       |

#### PAH (Polynuclear Aromatic Hydrocarbons) in Soil

# Method: ME-(AU)-[ENV]AN420

| QC Sample   | Sample Number | Parameter                                                                                                                               | Units       | LOR | Result | Original | Spike | Recover |
|-------------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------|-------------|-----|--------|----------|-------|---------|
| E139332.028 | LB077546.007  | Naphthalene                                                                                                                             | mg/kg       | 0.1 | 4.6    | <0.1     | 4     | 115     |
|             |               | 2-methylnaphthalene                                                                                                                     | mg/kg       | 0.1 | <0.1   | <0.1     | -     | -       |
|             |               | 1-methylnaphthalene                                                                                                                     | mg/kg       | 0.1 | <0.1   | <0.1     | -     | -       |
|             |               | Acenaphthylene                                                                                                                          | mg/kg       | 0.1 | 5.0    | 0.1      | 4     | 122     |
|             |               | Acenaphthene                                                                                                                            | mg/kg       | 0.1 | 4.7    | <0.1     | 4     | 118     |
|             |               | Fluorene                                                                                                                                | mg/kg       | 0.1 | 0.5    | <0.1     | -     | -       |
|             |               | Phenanthrene                                                                                                                            | mg/kg       | 0.1 | 6.9    | 0.3      | 4     | 164 ④   |
|             |               | Anthracene                                                                                                                              | mg/kg       | 0.1 | 5.1    | <0.1     | 4     | 127     |
|             |               | Fluoranthene                                                                                                                            | mg/kg       | 0.1 | 7.2    | 1.0      | 4     | 156 ④   |
|             |               | Pyrene                                                                                                                                  | mg/kg       | 0.1 | 8.7    | 1.1      | 4     | 190 @   |
|             |               | Benzo(a)anthracene                                                                                                                      | mg/kg       | 0.1 | 4.6    | 0.6      | -     | -       |
|             |               | Chrysene                                                                                                                                | mg/kg       | 0.1 | 3.8    | 0.5      | -     | -       |
|             |               | Benzo(b&j)fluoranthene                                                                                                                  | mg/kg       | 0.1 | 4.2    | 0.7      | -     | -       |
|             |               | Benzo(k)fluoranthene                                                                                                                    | mg/kg       | 0.1 | 3.2    | 0.3      | -     | -       |
|             |               | Benzo(a)pyrene                                                                                                                          | mg/kg       | 0.1 | 5.8    | 0.7      | 4     | 126     |
|             |               | Indeno(1,2,3-cd)pyrene                                                                                                                  | mg/kg       | 0.1 | 1.3    | 0.5      | -     | -       |
|             |               | Dibenzo(a&h)anthracene                                                                                                                  | mg/kg       | 0.1 | <0.1   | <0.1     | -     | -       |
|             |               | Benzo(ghi)perylene                                                                                                                      | mg/kg       | 0.1 | 0.8    | 0.3      | -     | -       |
|             |               | Carcinogenic PAHs, BaP TEQ <lor=0*< td=""><td>TEQ</td><td>0.2</td><td>6.7</td><td>1.0</td><td>-</td><td>-</td></lor=0*<>                | TEQ         | 0.2 | 6.7    | 1.0      | -     | -       |
|             |               | Carcinogenic PAHs, BaP TEQ <lor=lor*< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td>6.8</td><td>1.1</td><td>-</td><td>-</td></lor=lor*<>    | TEQ (mg/kg) | 0.3 | 6.8    | 1.1      | -     | -       |
|             |               | Carcinogenic PAHs, BaP TEQ <lor=lor 2*<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>6.8</td><td>1.0</td><td>-</td><td>-</td></lor=lor> | TEQ (mg/kg) | 0.2 | 6.8    | 1.0      | -     | -       |
|             |               | Total PAH                                                                                                                               | mg/kg       | 0.8 | 66     | 6.2      | -     | -       |
|             | Surrogates    | d5-nitrobenzene (Surrogate)                                                                                                             | mg/kg       | -   | 0.5    | 0.5      | -     | 94      |
|             |               | 2-fluorobiphenyl (Surrogate)                                                                                                            | mg/kg       | -   | 0.5    | 0.5      | -     | 94      |
|             |               | d14-p-terphenyl (Surrogate)                                                                                                             | mg/kg       | _   | 0.5    | 0.5      | _     | 102     |

#### Total Recoverable Metals in Soil by ICPOES from EPA 200.8 Digest

# Method: ME-(AU)-[ENV]AN040/AN320

| QC Sample    | Sample Number | Parameter    | Units | LOR | Result | Original       | Spike | Recovery% |
|--------------|---------------|--------------|-------|-----|--------|----------------|-------|-----------|
| SE139330.026 | LB077689.004  | Arsenic, As  | mg/kg | 3   | 49     | 2.90543691229  | 50    | 93        |
|              |               | Cadmium, Cd  | mg/kg | 0.3 | 46     | 0.11255750112  | 50    | 92        |
|              |               | Chromium, Cr | mg/kg | 0.3 | 54     | 8.79308093458  | 50    | 91        |
|              |               | Copper, Cu   | mg/kg | 0.5 | 49     | 4.36727251262  | 50    | 89        |
|              |               | Lead, Pb     | mg/kg | 1   | 54     | 12.07151500841 | 50    | 84        |
|              |               | Nickel, Ni   | mg/kg | 0.5 | 48     | 2.98849795713  | 50    | 91        |
|              |               | Zinc, Zn     | mg/kg | 0.5 | 62     | 24.56265490904 | 50    | 75        |
| SE139332.008 | LB077691.004  | Arsenic, As  | mg/kg | 3   | 44     | 4              | 50    | 79        |
|              |               | Cadmium, Cd  | mg/kg | 0.3 | 39     | <0.3           | 50    | 78        |
|              |               | Chromium, Cr | mg/kg | 0.3 | 70     | 38             | 50    | 65 ④      |
|              |               | Copper, Cu   | mg/kg | 0.5 | 56     | 15             | 50    | 83        |
|              |               | Lead, Pb     | mg/kg | 1   | 55     | 17             | 50    | 76        |
|              |               | Nickel, Ni   | mg/kg | 0.5 | 73     | 36             | 50    | 73        |
|              |               | Zinc, Zn     | mg/kg | 0.5 | 86     | 44             | 50    | 84        |
| SE139332.030 | LB077692.004  | Arsenic, As  | mg/kg | 3   | 67     | 28             | 50    | 78        |
|              |               | Cadmium, Cd  | mg/kg | 0.3 | 42     | 0.4            | 50    | 84        |
|              |               | Chromium, Cr | mg/kg | 0.3 | 56     | 15             | 50    | 84        |
|              |               | Copper, Cu   | mg/kg | 0.5 | 71     | 30             | 50    | 83        |
|              |               | Lead, Pb     | mg/kg | 1   | 54     | 10             | 50    | 88        |
|              |               | Nickel, Ni   | mg/kg | 0.5 | 43     | 0.9            | 50    | 84        |
|              |               | Zinc, Zn     | mg/kg | 0.5 | 53     | 9.7            | 50    | 86        |

22/5/2015 Page 31 of 35



# **MATRIX SPIKES**

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

#### Trace Metals (Dissolved) in Water by ICPMS

#### Method: ME-(AU)-[ENV]AN318

| QC Sample    | Sample Number | Parameter    | Units | LOR | Result | Original | Spike | Recovery% |
|--------------|---------------|--------------|-------|-----|--------|----------|-------|-----------|
| SE139161.017 | LB077648.004  | Arsenic, As  | μg/L  | 1   | 20     | <1       | 20    | 99        |
|              |               | Cadmium, Cd  | μg/L  | 0.1 | 21     | <0.1     | 20    | 103       |
|              |               | Chromium, Cr | µg/L  | 1   | 20     | <1       | 20    | 98        |
|              |               | Copper, Cu   | µg/L  | 1   | 20     | <1       | 20    | 102       |
|              |               | Lead, Pb     | µg/L  | 1   | 20     | <1       | 20    | 98        |
|              |               | Nickel, Ni   | μg/L  | 1   | 21     | <1       | 20    | 104       |
|              |               | Zinc, Zn     | μg/L  | 5   | 22     | <5       | 20    | 108       |

#### TRH (Total Recoverable Hydrocarbons) in Soil

#### Method: ME-(AU)-[ENV]AN403

| QC Sample    | Sample Number |             | Parameter                       | Units | LOR | Result | Original | Spike | Recovery% |
|--------------|---------------|-------------|---------------------------------|-------|-----|--------|----------|-------|-----------|
| SE139332.027 | LB077546.006  |             | TRH C10-C14                     | mg/kg | 20  | 44     | <20      | 40    | 110       |
|              |               |             | TRH C15-C28                     | mg/kg | 45  | 53     | <45      | 40    | 133       |
|              |               |             | TRH C29-C36                     | mg/kg | 45  | <45    | <45      | 40    | 85        |
|              |               |             | TRH C37-C40                     | mg/kg | 100 | <100   | <100     | -     | -         |
|              |               |             | TRH C10-C36 Total               | mg/kg | 110 | 130    | <110     | -     | -         |
|              |               |             | TRH C10-C40 Total               | mg/kg | 210 | <210   | <210     | -     | -         |
|              |               | TRH F Bands | TRH >C10-C16 (F2)               | mg/kg | 25  | 47     | <25      | 40    | 118       |
|              |               |             | TRH >C10-C16 (F2) - Naphthalene | mg/kg | 25  | 47     | <25      | -     | -         |
|              |               |             | TRH >C16-C34 (F3)               | mg/kg | 90  | <90    | <90      | 40    | 118       |
|              |               |             | TRH >C34-C40 (F4)               | mg/kg | 120 | <120   | <120     | -     | -         |

#### VOC's in Soil

# Method: ME-(AU)-[ENV]AN433/AN434

| QC Sample    | Sample Numbe | r          | Parameter                         | Units | LOR | Result | Original | Spike | Recovery |
|--------------|--------------|------------|-----------------------------------|-------|-----|--------|----------|-------|----------|
| SE139331.011 | LB077627.004 | Monocyclic | Benzene                           | mg/kg | 0.1 | 2.7    | <0.1     | 2.9   | 94       |
|              |              | Aromatic   | Toluene                           | mg/kg | 0.1 | 2.4    | <0.1     | 2.9   | 84       |
|              |              |            | Ethylbenzene                      | mg/kg | 0.1 | 2.1    | <0.1     | 2.9   | 72       |
|              |              |            | m/p-xylene                        | mg/kg | 0.2 | 4.4    | <0.2     | 5.8   | 75       |
|              |              |            | o-xylene                          | mg/kg | 0.1 | 2.1    | <0.1     | 2.9   | 73       |
|              |              | Polycyclic | Naphthalene                       | mg/kg | 0.1 | <0.1   | <0.1     | -     | -        |
|              |              | Surrogates | Dibromofluoromethane (Surrogate)  | mg/kg | -   | 4.3    | 4.4      | 5     | 85       |
|              |              |            | d4-1,2-dichloroethane (Surrogate) | mg/kg | -   | 5.0    | 5.1      | 5     | 101      |
|              |              |            | d8-toluene (Surrogate)            | mg/kg | -   | 5.8    | 5.7      | 5     | 116      |
|              |              |            | Bromofluorobenzene (Surrogate)    | mg/kg | -   | 6.3    | 5.6      | 5     | 126      |
|              |              | Totals     | Total Xylenes*                    | mg/kg | 0.3 | 6.5    | <0.3     | -     | -        |
|              |              |            | Total BTEX*                       | mg/kg | 0.6 | 14     | <0.6     | -     | -        |
| SE139332.028 | LB077628.004 | Monocyclic | Benzene                           | mg/kg | 0.1 | 3.0    | <0.1     | 2.9   | 102      |
|              |              | Aromatic   | Toluene                           | mg/kg | 0.1 | 2.7    | <0.1     | 2.9   | 92       |
|              |              |            | Ethylbenzene                      | mg/kg | 0.1 | 2.0    | <0.1     | 2.9   | 70       |
|              |              |            | m/p-xylene                        | mg/kg | 0.2 | 4.4    | <0.2     | 5.8   | 75       |
|              |              |            | o-xylene                          | mg/kg | 0.1 | 2.1    | <0.1     | 2.9   | 73       |
|              |              | Polycyclic | Naphthalene                       | mg/kg | 0.1 | <0.1   | <0.1     | -     | -        |
|              |              | Surrogates | Dibromofluoromethane (Surrogate)  | mg/kg | _   | 3.6    | 3.5      | 5     | 71       |
|              |              |            | d4-1,2-dichloroethane (Surrogate) | mg/kg | -   | 4.4    | 4.2      | 5     | 87       |
|              |              |            | d8-toluene (Surrogate)            | mg/kg | -   | 4.7    | 4.5      | 5     | 93       |
|              |              |            | Bromofluorobenzene (Surrogate)    | mg/kg | -   | 5.2    | 4.0      | 5     | 104      |
|              |              | Totals     | Total Xylenes*                    | mg/kg | 0.3 | 6.5    | <0.3     | -     | -        |
|              |              |            | Total BTEX*                       | mg/kg | 0.6 | 14     | <0.6     | _     | _        |

#### Volatile Petroleum Hydrocarbons in Soil

#### Method: ME-(AU)-[ENV]AN433/AN434/AN410

| QC Sample    | Sample Number |            | Parameter                         | Units | LOR | Result | Origina <b>l</b> | Spike | Recovery% |
|--------------|---------------|------------|-----------------------------------|-------|-----|--------|------------------|-------|-----------|
| SE139331.011 | LB077627.004  |            | TRH C6-C10                        | mg/kg | 25  | <25    | <25              | 24.65 | 84        |
|              |               |            | TRH C6-C9                         | mg/kg | 20  | <20    | <20              | 23.2  | 78        |
|              |               | Surrogates | Dibromofluoromethane (Surrogate)  | mg/kg | -   | 4.3    | 4.4              | 5     | 85        |
|              |               |            | d4-1,2-dichloroethane (Surrogate) | mg/kg | -   | 5.0    | 5.1              | 5     | 101       |
|              |               |            | d8-toluene (Surrogate)            | mg/kg | -   | 5.8    | 5.7              | 5     | 116       |
|              |               |            | Bromofluorobenzene (Surrogate)    | mg/kg | -   | 6.3    | 5.6              | 5     | 126       |
|              |               | VPH F      | Benzene (F0)                      | mg/kg | 0.1 | 2.7    | <0.1             | -     | -         |
|              |               | Bands      | TRH C6-C10 minus BTEX (F1)        | mg/kg | 25  | <25    | <25              | 7.25  | 98        |
| SE139332.028 | LB077628.004  |            | TRH C6-C10                        | mg/kg | 25  | <25    | <25              | 24.65 | 85        |
|              |               |            | TRH C6-C9                         | mg/kg | 20  | <20    | <20              | 23.2  | 78        |
|              |               | Surrogates | Dibromofluoromethane (Surrogate)  | mg/kg | -   | 3.6    | 3.5              | 5     | 71        |
|              |               |            | d4-1,2-dichloroethane (Surrogate) | mg/kg | -   | 4.4    | 4.2              | 5     | 87        |

22/5/2015 Page 32 of 35



# **MATRIX SPIKES**



Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

#### Volatile Petroleum Hydrocarbons in Soil (continued)

#### Method: ME-(AU)-[ENV]AN433/AN434/AN410

|              |               | (          |                                |       |     |        |          |       |           |
|--------------|---------------|------------|--------------------------------|-------|-----|--------|----------|-------|-----------|
| QC Sample    | Sample Number |            | Parameter                      | Units | LOR | Result | Original | Spike | Recovery% |
| SE139332.028 | LB077628.004  | Surrogates | d8-toluene (Surrogate)         | mg/kg | -   | 4.7    | 4.5      | 5     | 93        |
|              |               |            | Bromofluorobenzene (Surrogate) | mg/kg | -   | 5.2    | 4.0      | 5     | 104       |
|              |               | VPH F      | Benzene (F0)                   | mg/kg | 0.1 | 3.0    | <0.1     | -     | -         |
|              |               | Bands      | TRH C6-C10 minus BTEX (F1)     | mg/kg | 25  | <25    | <25      | 7.25  | 93        |

22/5/2015 Page 33 of 35



# **MATRIX SPIKE DUPLICATES**

SE139332 R0

Matrix spike duplicates are calculated as Relative Percent Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No matrix spike duplicates were required for this job.

22/5/2015 Page 34 of 35





Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: <a href="http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf">http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf</a>

- \* Non-accredited analysis.
- Sample not analysed for this analyte.
- ^ Analysis performed by external laboratory.
- IS Insufficient sample for analysis.

  LNR Sample listed, but not received.
- LOR Limit of reporting.
- QFH QC result is above the upper tolerance. QFL QC result is below the lower tolerance.
- ① At least 2 of 3 surrogates are within acceptance criteria.
- ② RPD failed acceptance criteria due to sample heterogeneity.
- ③ Results less than 5 times LOR preclude acceptance criteria for RPD.
- Recovery failed acceptance criteria due to matrix interference.
- ® Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- ⑥ LOR was raised due to sample matrix interference.
- ① LOR was raised due to dilution of significantly high concentration of analyte in sample.
- ® Reanalysis of sample in duplicate confirmed sample heterogeneity and inconsistency of results.
- Recovery failed acceptance criteria due to sample heterogeneity.
- OR was raised due to high conductivity of the sample (required dilution).
- † Refer to Analytical Report comments for further information.

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service, available on request and accessible at <a href="http://www.sgs.com/en/Terms-and-Conditions/General-Conditions-of-Services-English.aspx">http://www.sgs.com/en/Terms-and-Conditions/General-Conditions-of-Services-English.aspx</a>. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained herein reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This test report shall not be reproduced, except in full.

22/5/2015 Page 35 of 35



# **ANALYTICAL REPORT**



CLIENT DETAILS -

Client

Telephone

LABORATORY DETAILS

Date Started

Contact Imogen Powell

Parsons Brinckerhoff Australia Pty Ltd

Address Level 27, 680 George St

NSW 2000

15/5/2015

Manager Huong Crawford

Laboratory SGS Alexandria Environmental

Address Unit 16, 33 Maddox St Alexandria NSW 2015

28/5/2015

02 9272 5100 Telephone +61 2 8594 0400

Facsimile 02 9272 5101 Facsimile +61 2 8594 0499

Email ipowell@pb.com.au Email au.environmental.sydney@sgs.com

 Project
 2201679B - Syd Water ESA'S-Ashfield
 SGS Reference
 SE139332A R0

 Order Number
 76563--76567
 Report Number
 0000111384

 Samples
 38
 Date Reported
 28/5/2015

COMMENTS

Date Received

Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562(4354).

SIGNATORIES

Huong Crawford

Production Manager

Kamrul Ahsan

Senior Chemist

Ly Kim Ha

Organic Section Head

Kinly

SGS Australia Pty Ltd ABN 44 000 964 278 Environmental Services

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australia Australia t +61 2 8594 0400

f+61 2 8594 0499

www.au.sgs.com





### TCLP (Toxicity Characteristic Leaching Procedure) for Organics/SVOC [AN006] Tested: 26/5/2015

|                                    |          |     | TP01_0.05_AS  | TP09_1.0_AS   | TP14_0.5_AS   |
|------------------------------------|----------|-----|---------------|---------------|---------------|
|                                    |          |     | SOIL          | SOIL          | SOIL          |
|                                    |          |     |               |               |               |
|                                    |          |     | 13/5/2015     | 13/5/2015     | 14/5/2015     |
| PARAMETER                          | UOM      | LOR | SE139332A.001 | SE139332A,014 | SE139332A_024 |
| pH 1:20                            | pH Units | -   | 8.4           | 7.9           | 7.9           |
| pH 1:20 plus HCL                   | pH Units | -   | 1.8           | 1.8           | 1.8           |
| Extraction Solution Used           | No unit  | -   | 1             | 1             | 1             |
| Mass of Sample Used*               | g        | -   | 25            | 25            | 25            |
| Volume of ExtractionSolution Used* | mL       | -   | 500           | 500           | 500           |
| pH TCLP after 18 hours             | pH Units | =   | 4.8           | 4.9           | 5.0           |

28/05/2015 Page 2 of 6



SE139332A R0

### PAH (Polynuclear Aromatic Hydrocarbons) in TCLP Extract [AN420] Tested: 26/5/2015

|                |      |     | TP01_0.05_AS  | TP09_1.0_AS   | TP14_0.5_AS   |
|----------------|------|-----|---------------|---------------|---------------|
|                |      |     | SOIL          | SOIL          | SOIL          |
|                |      |     |               |               | -             |
|                |      |     | 13/5/2015     | 13/5/2015     | 14/5/2015     |
| PARAMETER      | UOM  | LOR | SE139332A,001 | SE139332A,014 | SE139332A_024 |
| Benzo(a)pyrene | μg/L | 0.1 | <0.1          | <0.1          | <0.1          |

28/05/2015 Page 3 of 6





### TCLP (Toxicity Characteristic Leaching Procedure) for Metals [AN006] Tested: 26/5/2015

|                                    |          |     | TP09_0.5_AS            | TP10_0.05_AS           | TP12_0.5_AS            | TP15_0.5_AS            | TP15_2.0_AS            |
|------------------------------------|----------|-----|------------------------|------------------------|------------------------|------------------------|------------------------|
|                                    |          |     | SOIL<br>-<br>13/5/2015 | SOIL<br>-<br>13/5/2015 | SOIL<br>-<br>13/5/2015 | SOIL<br>-<br>13/5/2015 | SOIL<br>-<br>13/5/2015 |
| PARAMETER                          | UOM      | LOR | SE139332A_013          | SE139332A.016          | SE139332A_020          | SE139332A_027          | SE139332A_029          |
| pH 1:20                            | pH Units | -   | 9.2                    | 8.9                    | 8.1                    | 8.0                    | 8.0                    |
| pH 1:20 plus HCL                   | pH Units | -   | 1.9                    | 1.8                    | 1.8                    | 1.8                    | 1.8                    |
| Extraction Solution Used           | No unit  | -   | 1                      | 1                      | 1                      | 1                      | 1                      |
| Mass of Sample Used*               | g        | -   | 13                     | 13                     | 13                     | 13                     | 13                     |
| Volume of ExtractionSolution Used* | mL       | -   | 250                    | 250                    | 250                    | 250                    | 250                    |
| pH TCLP after 18 hours             | pH Units | -   | 5.3                    | 4.9                    | 4.8                    | 4.9                    | 4.9                    |

28/05/2015 Page 4 of 6



SE139332A R0



Metals in Soil (TCLP) by ICPOES [AN320/AN321] Tested: 28/5/2015

|            |      |       | TP09_0.5_AS   | TP10_0.05_AS  | TP12_0.5_AS   | TP15_0.5_AS   | TP15_2.0_AS   |
|------------|------|-------|---------------|---------------|---------------|---------------|---------------|
|            |      |       | SOIL          | SOIL          | SOIL          | SOIL          | SOIL          |
|            |      |       |               |               |               |               | -             |
|            |      |       |               | 13/5/2015     | 13/5/2015     | 13/5/2015     | 13/5/2015     |
| PARAMETER  | UOM  | LOR   | SE139332A_013 | SE139332A,016 | SE139332A_020 | SE139332A_027 | SE139332A_029 |
| Lead, Pb   | mg/L | 0.02  | -             | -             | 0.55          | -             | <0.02         |
| Nickel, Ni | mg/L | 0.005 | 0.037         | 0.055         | -             | 0.084         | -             |

28/05/2015 Page 5 of 6



### **METHOD SUMMARY**

SE139332A R0

| METHOD    | METHODOLOGY SUMMARY                          |
|-----------|----------------------------------------------|
| WEITIOD — | IVIL I I I O D O L O G I SO I VII VI A I C I |

AN006 Contaminants of interest in a waste material are leached out of the waste with a selected leaching solution under

controlled conditions. The ratio of sample to extraction fluid is 100g to 2L (1 to 20 by mass). The concentration of each contaminant of interest is determined in the leachate by appropriate methods after separation from the

sample by filtering. Base on USEPA 1311.

AN020 Unpreserved water sample is filtered through a 0.45µm membrane filter and acidified with nitric acid similar to

APHA3030B.

AN083 Separatory funnels are used for aqueous samples and extracted by transferring an appropriate volume (mass) of liquid into a separatory funnel and adding 3 serial aliquots of dichloromethane. Samples receive a single extraction

at pH 7 to recover base / neutral analytes and two extractions at pH < 2 to recover acidic analytes. QC samples

are prepared by spiking organic free water with target analytes and extracting as per samples.

AN320/AN321 Metals by ICP-OES: Samples are preserved with 10% nitric acid for a wide range of metals and some non-metals.

This solution is measured by Inductively Coupled Plasma. Solutions are aspirated into an argon plasma at 8000-10000K and emit characteristic energy or light as a result of electron transitions through unique energy

levels. The emitted light is focused onto a diffraction grating where it is separated into components .

AN420 (SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols (etc) in soils, sediments

and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on

USEPA 3500C and 8270D).

#### FOOTNOTES -

\* Analysis not covered by the scope of accreditation.

\*\* Indicative data, theoretical holding time exceeded.

^ Performed by outside laboratory.

Not analysed.NVL Not validated.

IS Insufficient sample for analysis.

LNR Sample listed, but not received.

UOM Unit of Measure.

LOR Limit of Reporting.

↑↓ Raised/lowered Limit of

Reporting.

Samples analysed as received. Solid samples expressed on a dry weight basis.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/en/Terms-and-Conditions/General-Conditions-of-Services-English.aspx. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full.

28/05/2015 Page 6 of 6





# STATEMENT OF QA/QC PERFORMANCE

CLIENT DETAILS \_\_\_\_\_ LABORATORY DETAILS \_\_\_\_\_

Contact Imogen Powell Manager Huong Crawford

Client Parsons Brinckerhoff Australia Pty Ltd Laboratory SGS Alexandria Environmental
Address Level 27, 680 George St Address Unit 16, 33 Maddox St

Level 27, 680 George St Address Unit 16, 33 Maddox St NSW 2000 Alexandria NSW 2015

 Telephone
 02 9272 5100
 Telephone
 +61 2 8594 0400

 Facsimile
 02 9272 5101
 Facsimile
 +61 2 8594 0499

Facsimile 02 9272 5101 Facsimile +61 2 8594 0499

Email ipowell@pb.com.au Email au.environmental.sydney@sgs.com

Email ipowell@pb.com.au Email au.environmental.sydney@sgs.com

 Project
 2201679B - Syd Water ESA'S-Ashfield
 SGS Reference
 SE139332A R0

 Order Number
 76563--76567
 Report Number
 0000111407

Samples 38 Date Reported 28 May 2015

COMMENTS

All the laboratory data for each environmental matrix was compared to SGS Environmental Services' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document and was supplied by the Client. This QA/QC Statement must be read in conjunction with the referenced Analytical Report. The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met (within the SGS Alexandria Environmental laboratory).

SAMPLE SUMMARY

Sample counts by matrix 8 Soils Type of documentation received Email 25/05/2015@11:15a Date documentation received Samples received in good order Yes Samples received without headspace 3.2°C Yes Sample temperature upon receipt Turnaround time requested Sample container provider SGS Three Days Samples received in correct containers Yes Sufficient sample for analysis Yes Sample cooling method ce Samples clearly labelled Yes Complete documentation received Yes

SGS Australia Pty Ltd ABN 44 000 964 278 Environmental Services

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australia Australia t +61 2 8594 0400

f +61 2 8594 0499

www.au.sgs.com





TP09\_1.0\_AS

SE139332A.014

LB078038

13 May 2015

### HOLDING TIME SUMMARY

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

#### Metals in Soil (TCLP) by ICPOES Method: ME-(AU)-[ENV]AN320/AN321 Sample Name Sample No. QC Ref Received **Extraction Due** Extracted Analysis Due Analysed TP09 0.5 AS SE139332A.013 LB078134 13 May 2015 15 May 2015 09 Nov 2015 28 May 2015 24 Nov 2015 28 May 2015 TP10\_0.05\_AS SE139332A.016 LB078134 13 May 2015 15 May 2015 09 Nov 2015 28 May 2015 24 Nov 2015 28 May 2015 TP12\_0.5\_AS SF139332A.020 LB078134 13 May 2015 15 May 2015 09 Nov 2015 28 May 2015 24 Nov 2015 28 May 2015 SE139332A.027 LB078134 13 May 2015 TP15\_0.5\_AS 15 May 2015 09 Nov 2015 28 May 2015 24 Nov 2015 28 May 2015 TP15 2.0 AS SE139332A.029 LB078134 13 May 2015 15 May 2015 09 Nov 2015 28 May 2015 24 Nov 2015 28 May 2015 PAH (Polynuclear Aromatic Hydrocarbons) in TCLP Extract Method: ME-(AU)-[ENV]AN420 Sample Name QC Ref **Extraction Due** Analysis Due 05 Jul 2015 TP01\_0.05\_AS SE139332A.001 LB078020 13 May 2015 15 May 2015 03 Jun 2015 26 May 2015 28 May 2015 TP09 1.0 AS SE139332A 014 LB078020 13 May 2015 15 May 2015 03 Jun 2015 26 May 2015 05 Jul 2015 28 May 2015 SE139332A.024 LB078020 14 May 2015 15 May 2015 04 Jun 2015 26 May 2015 05 Jul 2015 28 May 2015 TCLP (Toxicity Characteristic Leaching Procedure) for Metals Method: ME-(AU)-[ENV]AN006 Sample No. Sampled Analysis Due Analysed Sample Name QC Ref Extraction Due Received Extracted TP09 0.5 AS SE139332A.013 LB078037 13 May 2015 15 May 2015 09 Nov 2015 26 May 2015 09 Nov 2015 28 May 2015 TP10\_0.05\_AS SE139332A.016 LB078037 13 May 2015 15 May 2015 09 Nov 2015 26 May 2015 09 Nov 2015 28 May 2015 TP12 0.5 AS SE139332A.020 LB078037 13 May 2015 15 May 2015 09 Nov 2015 26 May 2015 09 Nov 2015 28 May 2015 SE139332A.027 LB078037 13 May 2015 09 Nov 2015 TP15\_0.5\_AS 15 May 2015 09 Nov 2015 26 May 2015 28 May 2015 TP15 2.0 AS SE139332A.029 LB078037 13 May 2015 15 May 2015 09 Nov 2015 26 May 2015 09 Nov 2015 28 May 2015 TCLP (Toxicity Characteristic Leaching Procedure) for Organics/SVOC Method: ME-(AU)-[ENV]AN006 Sample Name QC Ref Analysis Due Analysed TP01\_0.05\_AS SE139332A.001 LB078038 13 May 2015 15 May 2015 27 May 2015 26 May 2015 09 Jun 2015 28 May 2015

| TP14_0.5_AS | SE139332A,024 | LB078038 | 14 May 2015 | 15 May 2015 | 28 May 2015 | 26 May 2015 | 09 Jun 2015 | 28 May 2015 |
|-------------|---------------|----------|-------------|-------------|-------------|-------------|-------------|-------------|
|             |               |          |             |             |             |             |             |             |
|             |               |          |             |             |             |             |             |             |
|             |               |          |             |             |             |             |             |             |
|             |               |          |             |             |             |             |             |             |
|             |               |          |             |             |             |             |             |             |
|             |               |          |             |             |             |             |             |             |
|             |               |          |             |             |             |             |             |             |
|             |               |          |             |             |             |             |             |             |
|             |               |          |             |             |             |             |             |             |
|             |               |          |             |             |             |             |             |             |
|             |               |          |             |             |             |             |             |             |

15 May 2015

27 May 2015

26 May 2015

09 Jun 2015

28 May 2015

28/5/2015 Page 2 of 9





# **SURROGATES**

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

### PAH (Polynuclear Aromatic Hydrocarbons) in TCLP Extract

### Method: ME-(AU)-[ENV]AN420

| Parameter                    | Sample Name  | Sample Number | Units | Criteria  | Recovery % |
|------------------------------|--------------|---------------|-------|-----------|------------|
| 2-fluorobiphenyl (Surrogate) | TP01_0.05_AS | SE139332A.001 | %     | 40 - 130% | 46         |
|                              | TP09_1.0_AS  | SE139332A.014 | %     | 40 - 130% | 58         |
|                              | TP14_0.5_AS  | SE139332A.024 | %     | 40 - 130% | 50         |
| d14-p-terphenyl (Surrogate)  | TP01_0.05_AS | SE139332A.001 | %     | 40 - 130% | 50         |
|                              | TP09_1.0_AS  | SE139332A.014 | %     | 40 - 130% | 70         |
|                              | TP14_0.5_AS  | SE139332A.024 | %     | 40 - 130% | 66         |
| d5-nitrobenzene (Surrogate)  | TP01_0.05_AS | SE139332A.001 | %     | 40 - 130% | 42         |
|                              | TP09_1.0_AS  | SE139332A.014 | %     | 40 - 130% | 56         |
|                              | TP14_0.5_AS  | SE139332A.024 | %     | 40 - 130% | 42         |

28/5/2015 Page 3 of 9





# **METHOD BLANKS**

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

### Metals in Soil (TCLP) by ICPOES

### Method: ME-(AU)-[ENV]AN320/AN321

| Sample Number | Parameter  | Units | LOR   | Result |
|---------------|------------|-------|-------|--------|
| LB078134.001  | Lead, Pb   | mg/L  | 0.02  | <0.02  |
|               | Nickel, Ni | mg/L  | 0.005 | <0.005 |

### PAH (Polynuclear Aromatic Hydrocarbons) in TCLP Extract

### Method: ME-(AU)-[ENV]AN420

| Sample Number |            | Parameter                    | Units | LOR | Result |
|---------------|------------|------------------------------|-------|-----|--------|
| LB078020.001  |            | Benzo(a)pyrene               | μg/L  | 0.1 | <0.1   |
|               | Surrogates | d5-nitrobenzene (Surrogate)  | %     | _   | 106    |
|               |            | 2-fluorobiphenyl (Surrogate) | %     | -   | 108    |
|               |            | d14-p-terphenyl (Surrogate)  | %     | -   | 118    |

28/5/2015 Page 4 of 9



# **DUPLICATES**

SE139332A R0

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No duplicates were required for this job.

28/5/2015 Page 5 of 9



# LABORATORY CONTROL SAMPLES

SE139332A R0

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

### Metals in Soil (TCLP) by ICPOES

### Method: ME-(AU)-[ENV]AN320/AN321

| Sample Number | Parameter  | Units | LOR   | Result | Expected | Criteria % | Recovery % |
|---------------|------------|-------|-------|--------|----------|------------|------------|
| LB078134.002  | Lead, Pb   | mg/L  | 0.02  | 2.0    | 2        | 80 - 120   | 98         |
|               | Nickel, Ni | mg/L  | 0.005 | 2.0    | 2        | 80 - 120   | 98         |

### PAH (Polynuclear Aromatic Hydrocarbons) in TCLP Extract

### Method: ME-(AU)-[ENV]AN420

| Sample Number |            | Parameter                    | Units | LOR | Result | Expected | Criteria % | Recovery % |
|---------------|------------|------------------------------|-------|-----|--------|----------|------------|------------|
| LB078020.002  |            | Benzo(a)pyrene               | μg/L  | 0.1 | 44     | 40       | 60 - 140   | 109        |
|               | Surrogates | d5-nitrobenzene (Surrogate)  | μg/L  | -   | 0.5    | 0.5      | 40 - 130   | 102        |
|               |            | 2-fluorobiphenyl (Surrogate) | μg/L  | -   | 0.5    | 0.5      | 40 - 130   | 104        |
|               |            | d14-p-terphenyl (Surrogate)  | μg/L  | -   | 0.6    | 0.5      | 40 - 130   | 112        |

28/5/2015 Page 6 of 9



# MATRIX SPIKES



Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No matrix spikes were required for this job.

28/5/2015 Page 7 of 9





# **MATRIX SPIKE DUPLICATES**

Matrix spike duplicates are calculated as Relative Percent Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No matrix spike duplicates were required for this job.

28/5/2015 Page 8 of 9







Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: <a href="http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf">http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf</a>

- \* Non-accredited analysis.
- Sample not analysed for this analyte.
- ^ Analysis performed by external laboratory.
- IS Insufficient sample for analysis.

  LNR Sample listed, but not received.
- LOR Limit of reporting.
- QFH QC result is above the upper tolerance. QFL QC result is below the lower tolerance.
- ① At least 2 of 3 surrogates are within acceptance criteria.
- ② RPD failed acceptance criteria due to sample heterogeneity.
- ® Results less than 5 times LOR preclude acceptance criteria for RPD.
- Recovery failed acceptance criteria due to matrix interference.
- ® Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- ⑥ LOR was raised due to sample matrix interference.
- ② LOR was raised due to dilution of significantly high concentration of analyte in sample.
- ® Reanalysis of sample in duplicate confirmed sample heterogeneity and inconsistency of results.
- Recovery failed acceptance criteria due to sample heterogeneity.
- OR was raised due to high conductivity of the sample (required dilution).
- † Refer to Analytical Report comments for further information.

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service, available on request and accessible at <a href="http://www.sgs.com/en/Terms-and-Conditions/General-Conditions-of-Services-English.aspx">http://www.sgs.com/en/Terms-and-Conditions/General-Conditions-of-Services-English.aspx</a>. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained herein reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This test report shall not be reproduced, except in full.

28/5/2015 Page 9 of 9

# AU.SampleReceipt.Sydney (Sydney)

From: Powell, Imogen [IPowell@pb.com.au]

**Sent:** Friday, 29 May 2015 10:07 AM

To: AU.Environmental.Sydney (Sydney); AU.SampleReceipt.Sydney (Sydney)

Cc: Hutson, Philip

Subject: FW: SGS Sample Receipt Advice (Ref: 2201679B - Syd Water ESA'S-Ashfield, Lab Ref:

SE139332)

Attachments: SE139332\_Receipt.PDF; SE139332\_COC.PDF

Hi Huong

139

Please could you schedule lead analysis on sample TP12 1.0 AS?

On 3 day TAT

Thanks

Imogen

WSP | Parsons Brinckerhoff

Imogen Powell

Senior Environmental Scientist

D: +61 2 92721478

SGS Alexandria Environmental

SE139332B COC Received: 15 – May – 2015

De 0366 /2015

3 DAMS TAT.

IPowell@pb.com.au

----Original Message----

From: AU.Samplereceipt.Sydney@SGS.com [mailto:AU.Samplereceipt.Sydney@SGS.com]

Sent: Tuesday, 19 May 2015 4:51 PM To: Powell, Imogen; Robinson, Daniel

Subject: SGS Sample Receipt Advice (Ref: 2201679B - Syd Water ESA'S-Ashfield, Lab Ref:

SE139332)

Dear Imogen Powell,

Please be advised we have received samples for analysis as detailed in the attached documentation.

Best regards,

SGS Alexandria Sample Administration Team

SGS Australia Pty Ltd Phone: +61 (0)2 8594 0400 Fax: +61 (0)2 8594 0499

Information in this email and any attachments is confidential and intended solely for the use of the individual(s) to whom it is addressed or otherwise directed. Please note that any views or opinions presented in this email are solely those of the author and do not necessarily represent those of the Company.

Finally, the recipient should check this email and any attachments for the presence of viruses. The Company accepts no liability for any damage caused by any virus transmitted by this email.

All SGS services are rendered in accordance with the applicable SGS conditions of service available on request and accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx





### SAMPLE RECEIPT ADVICE

CLIENT DETAILS

LABORATORY DETAILS

Laboratory

Imogen Powell Contact

Parsons Brinckerhoff Australia Pty Ltd Client

Level 27, 680 George St Address

**NSW 2000** 

**Huong Crawford** Manager

SGS Alexandria Environmental

Unit 16, 33 Maddox St Address

Alexandria NSW 2015

02 9272 5100 +61 2 8594 0400 Telephone Telephone 02 9272 5101 +61 2 8594 0499 Facsimile Facsimile

ipowell@pb.com.au au.environmental.sydney@sgs.com Email Email

2201679B - Syd Water ESA'S-Ashfield Project

Fri 15/5/2015 Samples Received 76563--76567 Order Number Report Due Wed 3/6/2015 SE139332B Samples 39 SGS Reference

SUBMISSION DETAILS

This is to confirm that 39 samples were received on Friday 15/5/2015. Results are expected to be ready by Wednesday 3/6/2015. Please quote SGS reference SE139332B when making enquiries. Refer below for details relating to sample integrity upon receipt.

Sample counts by matrix Type of documentation received

Email 29/05/2015@10:07am Date documentation received Samples received in good order Yes Sample temperature upon receipt 3.2°C Samples received without headspace Yes Turnaround time requested Three Days Sample container provider SGS Samples received in correct containers Yes Sufficient sample for analysis Yes Samples clearly labelled

Sample cooling method се Complete documentation received Yes

Samples will be held for one month for water samples and two months for soil samples from date of report, unless otherwise instructed.

COMMENTS -

To the extent not inconsistent with the other provisions of this document and unless specifically agreed otherwise in writing by SGS, all SGS services are rendered in accordance with the applicable SGS General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions/General-Conditions-of-Services-English.aspx as at the date of this document.

Attention is drawn to the limitations of liability and to the clauses of indemnification.





CLIENT DETAILS \_

# **SAMPLE RECEIPT ADVICE**

Client Parsons Brinckerhoff Australia Pty Ltd

Project 2201679B - Syd Water ESA'S-Ashfield

SUMMARY OF ANALYSIS

SUMMARY OF ANALYSIS

No. Sample ID

No. Sample ID

The project 2201679B - Syd Water ESA'S-Ashfield

Project 2201679B - Syd Water ESA'S-Ashfield

No. Sample ID

No. The project 2201679B - Syd Water ESA'S-Ashfield

The above table represents SGS Environmental Services' interpretation of the client-supplied Chain Of Custody document.

The numbers shown in the table indicate the number of results requested in each package.

Please indicate as soon as possible should your request differ from these details.

Testing as per this table shall commence immediately unless the client intervenes with a correction .



### **ANALYTICAL REPORT**



CLIENT DETAILS \_\_\_\_\_\_ LABORATORY DETAILS

Contact Imogen Powell Manager Huong Crawford

Client Parsons Brinckerhoff Australia Pty Ltd Laboratory SGS Alexandria Environmental Address Level 27, 680 George St Address Unit 16, 33 Maddox St

NSW 2000 Alexandria NSW 2015

 Telephone
 02 9272 5100
 Telephone
 +61 2 8594 0400

 Facsimile
 02 9272 5101
 Facsimile
 +61 2 8594 0499

Email ipowell@pb.com.au Email au.environmental.sydney@sgs.com

 Project
 2201679B - Syd Water ESA'S-Ashfield
 SGS Reference
 SE139332B R0

 Order Number
 76563--76567
 Report Number
 0000111880

 Samples
 39
 Date Reported
 3/6/2015

 Samples
 39
 Date Reported
 3/6/2015

 Date Received
 15/5/2015
 Date Started
 29/5/2015

COMMENTS

Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562(4354).

SIGNATORIES

Kamrul Ahsan

Senior Chemist Organic Section Head

SGS Australia Pty Ltd ABN 44 000 964 278

**Environmental Services** 

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015

kmlyl

Ly Kim Ha

Australia Australia t +61 2 8594 0400

f+61 2 8594 0499

www.au.sgs.com





Total Recoverable Metals in Soil by ICPOES from EPA 200.8 Digest [AN040/AN320] Tested: 2/6/2015

|           |       |     | TP12_1.0_AS   |
|-----------|-------|-----|---------------|
|           |       |     | SOIL          |
|           |       |     |               |
| PARAMETER | UOM   | LOR | SE139332B_039 |
| Lead, Pb  | mg/kg | 1   | 14            |

3/06/2015 Page 2 of 4





Moisture Content [AN002] Tested: 29/5/2015

|            |     |     | TP12_1.0_AS   |
|------------|-----|-----|---------------|
|            |     |     | SOIL          |
|            |     |     |               |
|            |     |     | 13/5/2015     |
| PARAMETER  | UOM | LOR | SE139332B,039 |
| % Moisture | %   | 0.5 | 24.0          |

3/06/2015 Page 3 of 4



### **METHOD SUMMARY**

SE139332B R0

METHOD -

- METHODOLOGY SUMMARY -

AN002

The test is carried out by drying (at either 40°C or 105°C) a known mass of sample in a weighed evaporating basin. After fully dry the sample is re-weighed. Samples such as sludge and sediment having high percentages of moisture will take some time in a drying oven for complete removal of water.

AN040

A portion of sample is digested with Nitric acid to decompose organic matter and Hydrochloric acid to complete the digestion of metals and then filtered for analysis by ASS or ICP as per USEPA Method 200.8.

AN040/AN320

A portion of sample is digested with nitric acid to decompose organic matter and hydrochloric acid to complete the digestion of metals. The digest is then analysed by ICP OES with metals results reported on the dried sample basis. Based on USEPA method 200.8 and 6010C.

### FOOTNOTES -

\* Analysis not covered by the scope of accreditation.

\*\* Indicative data, theoretical holding time exceeded.

Performed by outside laboratory.

- Not analysed NVL Not validated.

IS Insufficient sample for analysis. LNR Sample listed, but not received.

UOM Unit of Measure.

LOR Limit of Reporting.

↑↓ Raised/lowered Limit of

Reporting.

Samples analysed as received.

Solid samples expressed on a dry weight basis.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/en/Terms-and-Conditions/General-Conditions-of-Services-English.aspx. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full.

3/06/2015 Page 4 of 4





# STATEMENT OF QA/QC PERFORMANCE

CLIENT DETAILS \_\_\_\_\_ LABORATORY DETAILS \_\_\_\_\_

Contact Imogen Powell Manager Huong Crawford

Client Parsons Brinckerhoff Australia Pty Ltd Laboratory SGS Alexandria Environmental Address Level 27, 680 George St Address Unit 16, 33 Maddox St

NSW 2000 Alexandria NSW 2015

 Telephone
 02 9272 5100
 Telephone
 +61 2 8594 0400

 Facsimile
 02 9272 5101
 Facsimile
 +61 2 8594 0499

Facsimile 02 9272 5101 Facsimile +61 2 8594 0499
Email ipowell@pb.com.au Email au.environmental.sydney@sgs.com

 Project
 2201679B - Syd Water ESA'S-Ashfield
 SGS Reference
 SE139332B R0

 Order Number
 76563--76567
 Report Number
 0000111881

 Order Number
 76563--76567
 Report Number
 0000111881

 Samples
 39
 Date Reported
 03 Jun 2015

COMMENTS

All the laboratory data for each environmental matrix was compared to SGS Environmental Services' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document and was supplied by the Client. This QA/QC Statement must be read in conjunction with the referenced Analytical Report. The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met with the exception of the following:

Extraction Date Moisture Content 1 item

SAMPLE SUMMARY

Sample counts by matrix 1 Soil Type of documentation received Email 29/05/2015@10:07ε Date documentation received Samples received in good order Yes Samples received without headspace Sample temperature upon receipt 3.2°C Yes Turnaround time requested SGS Three Days Sample container provider Samples received in correct containers Yes Sufficient sample for analysis Yes Sample cooling method ce Samples clearly labelled Yes

Complete documentation received Yes

SGS Australia Pty Ltd ABN 44 000 964 278 Environmental Services Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC

Alexandria NSW 2015 Rd BC Alexandria NSW 2015 Australia t Australia

t +61 2 8594 0400 f +61 2 8594 0499

www.au.sgs.com



SE139332B R0

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

### Moisture Content Method: ME-(AU)-[ENV]AN002

| Sample Name | Sample No.    | QC Ref   | Sampled     | Received    | Extraction Due | Extracted    | Analysis Due | Analysed    |
|-------------|---------------|----------|-------------|-------------|----------------|--------------|--------------|-------------|
| TP12_1.0_AS | SE139332B.039 | LB078228 | 13 May 2015 | 15 May 2015 | 27 May 2015    | 29 May 2015† | 03 Jun 2015  | 01 Jun 2015 |

#### Total Recoverable Metals in Soil by ICPOES from EPA 200.8 Digest

### Method: ME-(AU)-[ENV]AN040/AN320

| Sample Name | Sample No.    | QC Ref   | Sampled     | Received    | Extraction Due | Extracted   | Analysis Due | Analysed    |
|-------------|---------------|----------|-------------|-------------|----------------|-------------|--------------|-------------|
| TP12 1.0 AS | SE139332B 039 | LB078340 | 13 May 2015 | 15 May 2015 | 09 Nov 2015    | 02 Jun 2015 | 09 Nov 2015  | 03 Jun 2015 |

3/6/2015 Page 2 of 9



# **SURROGATES**



Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No surrogates were required for this job.

3/6/2015 Page 3 of 9





# **METHOD BLANKS**

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

### Total Recoverable Metals in Soil by ICPOES from EPA 200.8 Digest

Method: ME-(AU)-[ENV]AN040/AN320

| Sample Number | Parameter | Units | LOR | Result |
|---------------|-----------|-------|-----|--------|
| LB078340.001  | Lead, Pb  | mg/kg | 1   | <1     |

3/6/2015 Page 4 of 9



### **DUPLICATES**

SE139332B R0

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

### Moisture Content Method: ME-(AU)-[ENV]AN002

| Original     | Duplicate    | Parameter  | Units | LOR | Original     | Duplicate      | Criteria % | RPD % |
|--------------|--------------|------------|-------|-----|--------------|----------------|------------|-------|
| SE139870.005 | LB078228.010 | % Moisture | %w/w  | 0.5 | 38.377723970 | \$8.5390428211 | 1 31       | 0     |

### Total Recoverable Metals in Soil by ICPOES from EPA 200.8 Digest

### Method: ME-(AU)-[ENV]AN040/AN320

| Original     | Duplicate    | Parameter | Units | LOR | Original Du       | plicate  | Criteria % | RPD % |
|--------------|--------------|-----------|-------|-----|-------------------|----------|------------|-------|
| SE139788,001 | LB078340.014 | Lead, Pb  | mg/kg | 1   | 58.87642135644.59 | 33468013 | 32         | 9     |
| SE139788,010 | LB078340.024 | Lead, Pb  | mg/kg | 1   | 31,29138940045,96 | 63388497 | 31         | 11    |

3/6/2015 Page 5 of 9



# LABORATORY CONTROL SAMPLES

SE139332B R0

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

### Total Recoverable Metals in Soil by ICPOES from EPA 200.8 Digest

Method: ME-(AU)-[ENV]AN040/AN320

| Sample Number | Parameter | Units | LOR | Result | Expected | Criteria % | Recovery % |
|---------------|-----------|-------|-----|--------|----------|------------|------------|
| LB078340.002  | Lead, Pb  | mg/kg | 1   | 49     | 50       | 80 - 120   | 99         |

3/6/2015 Page 6 of 9





# **MATRIX SPIKES**

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

### Total Recoverable Metals in Soil by ICPOES from EPA 200.8 Digest

Method: ME-(AU)-[ENV]AN040/AN320

| QC Sample    | Sample Number | Parameter | Units | LOR | Result | Original | Spike | Recovery% |
|--------------|---------------|-----------|-------|-----|--------|----------|-------|-----------|
| SE139332B.03 | LB078340.004  | Lead, Pb  | mg/kg | 1   | 60     | 14       | 50    | 91        |

3/6/2015 Page 7 of 9





# **MATRIX SPIKE DUPLICATES**

Matrix spike duplicates are calculated as Relative Percent Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No matrix spike duplicates were required for this job.

3/6/2015 Page 8 of 9



### **FOOTNOTES**

Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: <a href="http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf">http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf</a>

- \* Non-accredited analysis.
- Sample not analysed for this analyte.
- ^ Analysis performed by external laboratory.
- IS Insufficient sample for analysis.

  LNR Sample listed, but not received.
- LOR Limit of reporting.
- QFH QC result is above the upper tolerance. QFL QC result is below the lower tolerance.
- ① At least 2 of 3 surrogates are within acceptance criteria.
- ② RPD failed acceptance criteria due to sample heterogeneity.
- ® Results less than 5 times LOR preclude acceptance criteria for RPD.
- Recovery failed acceptance criteria due to matrix interference.
- ® Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- ⑥ LOR was raised due to sample matrix interference.
- ② LOR was raised due to dilution of significantly high concentration of analyte in sample.
- ® Reanalysis of sample in duplicate confirmed sample heterogeneity and inconsistency of results.
- Recovery failed acceptance criteria due to sample heterogeneity.
- OR was raised due to high conductivity of the sample (required dilution).
- † Refer to Analytical Report comments for further information.

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service, available on request and accessible at <a href="http://www.sgs.com/en/Terms-and-Conditions/General-Conditions-of-Services-English.aspx">http://www.sgs.com/en/Terms-and-Conditions/General-Conditions-of-Services-English.aspx</a>. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained herein reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This test report shall not be reproduced, except in full.

3/6/2015 Page 9 of 9

|                      |                                  |                                        | *_     | ativ                       | 8        |     |            |           | PC       | ž        |                     |               |      | Invoice to: |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------------------|----------------------------------|----------------------------------------|--------|----------------------------|----------|-----|------------|-----------|----------|----------|---------------------|---------------|------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                      |                                  |                                        | Ē      | Ne K                       | Pe       |     | $ \times $ | <u>_0</u> | 9        | als*     |                     |               |      | *Comments:  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Sample I.D.          | Container<br>Size                | Sample<br>Location                     | Medium | Preservativ                | Filtered | Hdī | BTEX       | PAH's     | OC/OP/PC | Metals** |                     |               |      | Initials    | Comments/Add<br>and/or Anai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Dupla AS             | Jal                              |                                        |        |                            |          | 1   | /          |           | 1        | 1        |                     |               |      | 1)          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Dupla AS<br>Dupla AS | Jar                              |                                        |        |                            |          |     |            | /         |          | 1        |                     |               |      | De          | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ·                    |                                  |                                        |        |                            |          |     |            |           |          |          |                     |               |      |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                      |                                  |                                        |        | manusara wasan arab arab a |          |     |            |           |          |          |                     |               |      |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                      |                                  |                                        |        |                            |          |     |            |           |          |          |                     | 1_            | _    |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                      |                                  |                                        |        |                            |          |     |            |           |          | _        | Environm            | entai<br>ydne |      | /ision      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <b>&amp;</b>         |                                  | <b></b>                                |        |                            |          |     |            | ***       |          |          | Work Ord            | der Re        | fere | nce         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                      |                                  |                                        |        |                            | -        |     |            |           |          |          | ES1                 | 522           | 20   | 77 -        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                      |                                  |                                        |        |                            |          |     |            |           |          | -        |                     | <b>ት</b> ነ    | k    | -<br>       | The second secon |
|                      |                                  |                                        |        |                            | -        |     |            |           |          | ١.       |                     |               | Ü    |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                      |                                  | · · · · · · · · · · · · · · · · · · ·  |        |                            | -        |     |            |           | <u> </u> |          |                     |               |      |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                      |                                  | ······································ |        |                            | _        | ļ   | -          |           | ļ        |          | Telephone . +       | +61-2-        | 8784 | 8555        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                      |                                  |                                        |        |                            |          |     |            |           |          |          |                     |               | j    |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                      | Relinquished b                   | y:                                     |        |                            |          |     | Re         | ling      | uish     | ed b     | <b>/</b> :          |               |      |             | Medium*: S = Soil, W = Wa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                      | Date & Time:                     |                                        |        |                            |          |     | Dε         | ate 8     | & Tim    | e:       |                     |               |      |             | Legend**: (circle the following                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                      | Company:                         |                                        |        |                            |          |     | Co         | mp        | any:     |          |                     |               |      |             | Metals: Al 💋 Be 🕼                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                      | Signature:                       |                                        |        |                            |          |     | Siç        | gnat      | ture:    |          |                     |               |      |             | Li Mg Mn (Ni                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Staffle 11-19        | Received in Go<br>& Condition by | ood Order<br>(Name):                   |        |                            |          |     |            |           |          |          | od Order<br>(Name): |               |      |             | Samples on Ice:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1536                 | Date & Time:                     |                                        |        |                            |          |     | Dε         | ate 8     | ₹ Tim    | ie:      |                     |               |      |             | Disease for back a six                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                      | Company:                         |                                        |        |                            |          |     | Co         | omp       | any:     |          |                     | 4             |      |             | Please fax back a signal place and signal place.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                      | Signature:                       |                                        |        |                            |          |     | Sig        | gnat      | ture:    |          |                     |               |      |             | Sumpress are received                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |



# **SAMPLE RECEIPT NOTIFICATION (SRN)**

: ES1522077 Work Order

Client : PARSONS BRINCKERHOFF AUST P/L Laboratory : Environmental Division Sydney

Contact : MR DAN ROBINSON Contact

Address **GPO BOX 5394** Address : 277-289 Woodpark Road Smithfield

NSW Australia 2164

E-mail : danrobinson@pb.com.au E-mail

SYDNEY NSW, AUSTRALIA 2001

Telephone : +61 02 92725100 Telephone : +61-2-8784 8555 Facsimile : +61 02 92725101 Facsimile : +61-2-8784 8500

**Project** : 2201679B AS SYD WATER Page : 1 of 2

Order number Quote number : ES2014PARBRINSW0202 (EN/008/14) C-O-C number : 76568

QC Level : NEPM 2013 Schedule B(3) and ALS

QCS3 requirement

Site : ASHFIELD

Sampler

**Dates** 

**Date Samples Received** : 15-May-2015 Issue Date : 15-May-2015 22-May-2015 Scheduled Reporting Date Client Requested Due 22-May-2015

Date

Delivery Details

Mode of Delivery Security Seal : Pickup : Intact

No. of coolers/boxes : 1 Temperature : 11.1'C - Ice Bricks present

Receipt Detail No. of samples received / analysed : 2/2

### General Comments

This report contains the following information:

- Sample Container(s)/Preservation Non-Compliances
- Summary of Sample(s) and Requested Analysis
- Proactive Holding Time Report
- Requested Deliverables
- Please refer to the Proactive Holding Time Report table below which summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory. The absence of this summary table indicates that all samples have been received within the recommended holding times for the analysis requested.
- Please direct any queries you have regarding this work order to the above ALS laboratory contact.
- Analytical work for this work order will be conducted at ALS Sydney.
- Sample Disposal Aqueous (14 days), Solid (60 days) from date of completion of work order.

Issue Date : 15-May-2015

Page

2 of 2 ES1522077 Amendment 0 Work Order

Client : PARSONS BRINCKERHOFF AUST P/L



# Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

• No sample container / preservation non-compliance exist.

# Summary of Sample(s) and Requested Analysis

| process necessatasks. Packages as the determin | cribed below may<br>iry for the executi<br>may contain ad<br>ation of moisture<br>uded in the package. | on of client requested ditional analyses, such |                                      |                                             |                                           | 3/8Metals                                      |
|------------------------------------------------|--------------------------------------------------------------------------------------------------------|------------------------------------------------|--------------------------------------|---------------------------------------------|-------------------------------------------|------------------------------------------------|
| Matrix: <b>SOIL</b> Laboratory sample          | Client sampling<br>date / time                                                                         | Client sample ID                               | SOIL - EA055-103<br>Moisture Content | SOIL - EP075 SIM PAH only<br>SIM - PAH only | SOIL - S-02<br>8 Metals (incl. Digestion) | SOIL - S-16<br>TRH/BTEXN/PAH/OC/OP/PCB/8Metals |
| ES1522077-001                                  | [ 14-May-2015 ]                                                                                        | DUP1A AS                                       | ✓                                    |                                             |                                           | ✓                                              |
| ES1522077-002                                  | [ 14-May-2015 ]                                                                                        | DUP2A AS                                       | 1                                    | ✓                                           | ✓                                         |                                                |

# Proactive Holding Time Report

Sample(s) have been received within the recommended holding times for the requested analysis.

# Requested Deliverables

### **ACCOUNTS PAYABLE**

| - A4 - AU Tax Invoice (INV)                                                      | Email | accountspayable@pb.com.au |
|----------------------------------------------------------------------------------|-------|---------------------------|
| DAN ROBINSON                                                                     |       |                           |
| <ul> <li>*AU Certificate of Analysis - NATA (COA)</li> </ul>                     | Email | danrobinson@pb.com.au     |
| <ul> <li>*AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)</li> </ul>    | Email | danrobinson@pb.com.au     |
| <ul> <li>*AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)</li> </ul>            | Email | danrobinson@pb.com.au     |
| <ul> <li>A4 - AU Sample Receipt Notification - Environmental HT (SRN)</li> </ul> | Email | danrobinson@pb.com.au     |
| - A4 - AU Tax Invoice (INV)                                                      | Email | danrobinson@pb.com.au     |
| - Chain of Custody (CoC) (COC)                                                   | Email | danrobinson@pb.com.au     |
| - EDI Format - ENMRG (ENMRG)                                                     | Email | danrobinson@pb.com.au     |
| - EDI Format - ESDAT (ESDAT)                                                     | Email | danrobinson@pb.com.au     |
|                                                                                  |       |                           |



## **CERTIFICATE OF ANALYSIS**

| Work Order   | : ES1522077                   | Page                    | :1of6                                               |
|--------------|-------------------------------|-------------------------|-----------------------------------------------------|
| Client       | PARSONS BRINCKERHOFF AUST P/L | Laboratory              | Environmental Division Sydney                       |
| Contact      | MR DAN ROBINSON               | Contact                 |                                                     |
| Address      | : GPO BOX 5394                | Address                 | 277-289 Woodpark Road Smithfield NSW Australia 2164 |
|              | SYDNEY NSW, AUSTRALIA 2001    |                         |                                                     |
| E-mail       | : danrobinson@pb.com.au       | E-mail                  |                                                     |
| Telephone    | : +61 02 92725100             | Telephone               | +61-2-8784 8555                                     |
| Facsimile    | : +61 02 92725101             | Facsimile               | +61-2-8784 8500                                     |
| Project      | . 2201679B_AS SYD WATER       | QC Level                | NEPM 2013 Schedule B(3) and ALS QCS3 requirement    |
| Order number |                               | Date Samples Received   | : 15-May-2015 15:30                                 |
| C-O-C number | . 76568                       | Date Analysis Commenced | 18-May-2015                                         |
| Sampler      |                               | Issue Date              | : 22-May-2015 16:29                                 |
| Site         | ASHFIELD                      |                         |                                                     |
|              |                               | No. of samples received | . 2                                                 |
| Quote number | 1                             | No. of samples analysed | : 2                                                 |

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

| ories indicated below. Electronic signing has been                                               |                                                     | Accreditation Category | Sydney Inorganics      | Sydney Organics        | Sydney Inorganics  |
|--------------------------------------------------------------------------------------------------|-----------------------------------------------------|------------------------|------------------------|------------------------|--------------------|
| been electronically signed by the authorized signatories indicated below. Electronic signing has | liance with procedures specified in 21 CFR Part 11. | Position               | Senior Organic Chemist | Senior Organic Chemist | Metals Coordinator |
| Signatories This document has                                                                    | carried out in complian                             | Signatories            | Pabi Subba             | Pabi Subba             | Shobhna Chandra    |
| NATA Accredited Laboratory 825                                                                   | Accredited for compliance with                      | ISO/IEC 17025.         |                        |                        |                    |
| <                                                                                                | < <b>1</b> < <b>2</b>                               |                        |                        |                        | ACCREDITATION      |



### General Comments

used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. Key

LOR = Limit of reporting

A = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

- EP071: Result of sample DUP1A AS has been confirmed by re-extraction and re-analysis.
- Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values Benzo(g.h.i)perylene (0.01). Less than LOR results for TEQ Zero' are treated as zero, for TEQ 1/2LOR' are treated as half the reported LOR, and for TEQ LOR' are treated as being equal to the reported LOR. are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(b+j) & Benzo(a)pyrene (1.0), Benzo(a)pyrene (1.0), Benzo(b+j) & Benzo(b+j) & Benzo(a)pyrene (1.0), Benzo(a)pyrene (1.0), Benzo(b+j) & Benzo(b+j) & Benzo(a)pyrene (1.0), Benzo(a)pyrene (1.0) Note: TEQ 1/2LOR and TEQ LOR will calculate as 0.6mg/Kg and 1.2mg/Kg respectively for samples with non-detects for all of the eight TEQ PAHs.



Analytical Results

Project Client

Page Work Order

3 of 6 ES1522077 PARSONS BRINCKERHOFF AUST P/L 2201679B\_AS SYD WATER

| Sub-Matrix: SOIL (Matrix: SOIL)           |            | Clie        | Client sample ID            | DUP1A AS      | DUP2A AS      | 1      | 1      | 1      |
|-------------------------------------------|------------|-------------|-----------------------------|---------------|---------------|--------|--------|--------|
|                                           | Clie       | ent samplir | Client sampling date / time | [14-May-2015] | [14-May-2015] |        |        | -      |
| Compound                                  | CAS Number | LOR         | Unit                        | ES1522077-001 | ES1522077-002 |        |        |        |
|                                           |            |             |                             | Result        | Result        | Result | Result | Result |
| EA055: Moisture Content                   |            |             |                             |               |               |        |        |        |
| △ Moisture Content (dried @ 103°C)        |            | -           | %                           | 6.9           | 7.9           |        |        |        |
| EG005T: Total Metals by ICP-AES           |            |             |                             |               |               |        |        |        |
| Arsenic                                   | 7440-38-2  | 2           | mg/kg                       | <5            | <5            |        |        |        |
| Cadmium                                   | 7440-43-9  | 1           | mg/kg                       | <1            | <1            |        |        |        |
| Chromium                                  | 7440-47-3  | 2           | mg/kg                       | 40            | 7             |        |        |        |
| Copper                                    | 7440-50-8  | 2           | mg/kg                       | 13            | 46            |        |        |        |
| Lead                                      | 7439-92-1  | 2           | mg/kg                       | 14            | 37            |        |        |        |
| Nickel                                    | 7440-02-0  | 2           | mg/kg                       | 34            | 11            |        |        |        |
| Zinc                                      | 7440-66-6  | 2           | mg/kg                       | 34            | 44            | -      |        | -      |
| EG035T: Total Recoverable Mercury by FIMS | MS         |             |                             |               |               |        |        |        |
| Mercury                                   | 7439-97-6  | 0.1         | mg/kg                       | <0.1          | <0.1          |        |        |        |
| EP066: Polychlorinated Biphenyls (PCB)    |            |             |                             |               |               |        |        |        |
| Total Polychlorinated biphenyls           |            | 0.1         | mg/kg                       | <0.1          |               |        |        |        |
| EP068A: Organochlorine Pesticides (OC)    |            |             |                             |               |               |        |        |        |
| alpha-BHC                                 | 319-84-6   | 0.05        | mg/kg                       | <0.05         |               |        |        |        |
| Hexachlorobenzene (HCB)                   | 118-74-1   | 0.05        | mg/kg                       | <0.05         | 1             | -      |        | -      |
| beta-BHC                                  | 319-85-7   | 0.05        | mg/kg                       | <0.05         |               |        |        |        |
| gamma-BHC                                 | 58-89-9    | 0.05        | mg/kg                       | <0.05         | -             |        |        |        |
| delta-BHC                                 | 319-86-8   | 0.05        | mg/kg                       | <0.05         | -             |        |        |        |
| Heptachlor                                | 76-44-8    | 0.05        | mg/kg                       | <0.05         |               |        |        |        |
| Aldrin                                    | 309-00-2   | 0.05        | mg/kg                       | <0.05         | -             |        |        |        |
| Heptachlor epoxide                        | 1024-57-3  | 0.05        | mg/kg                       | <0.05         | 1             | -      |        | -      |
| ^ Total Chlordane (sum)                   |            | 0.05        | mg/kg                       | <0.05         | 1             | -      |        |        |
| trans-Chlordane                           | 5103-74-2  | 0.05        | mg/kg                       | <0.05         | 1             | -      | -      | -      |
| alpha-Endosulfan                          | 9-98-86    | 0.05        | mg/kg                       | <0.05         | -             |        |        |        |
| cis-Chlordane                             | 5103-71-9  | 0.05        | mg/kg                       | <0.05         |               |        |        |        |
| Dieldrin                                  | 60-57-1    | 0.05        | mg/kg                       | <0.05         | -             |        |        |        |
| 4.4`-DDE                                  | 72-55-9    | 0.05        | mg/kg                       | <0.05         | -             | -      |        |        |
| Endrin                                    | 72-20-8    | 0.05        | mg/kg                       | <0.05         | 1             | 1      |        |        |
| beta-Endosulfan                           | 33213-65-9 | 0.05        | mg/kg                       | <0.05         | 1             | 1      | -      | -      |
| ^ Endosulfan (sum)                        | 115-29-7   | 0.05        | mg/kg                       | <0.05         | 1             | -      |        | -      |
| 4.4`-DDD                                  | 72-54-8    | 0.05        | mg/kg                       | <0.05         | 1             | 1      |        | -      |
| Endrin aldehyde                           | 7421-93-4  | 0.05        | mg/kg                       | <0.05         | -             | -      |        | -      |
| Endosulfan sulfate                        | 1031-07-8  | 0.05        | mg/kg                       | <0.05         | -             |        |        |        |
| 4.4`-DDT                                  | 50-59-3    | 0.2         | mg/kg                       | <0.2          | :             | -      |        |        |



4 of 6 ES1522077 PARSONS BRINCKERHOFF AUST P/L 22201679B\_AS SYD WATER Analytical Results Project Client

Page Work Order

| Sub Matrix: COII                                       |              | Client samula ID            | DIID4A AC     | DIID2A AC     |        |        |        |
|--------------------------------------------------------|--------------|-----------------------------|---------------|---------------|--------|--------|--------|
| (Matrix: SOIL)                                         |              |                             |               |               |        |        |        |
|                                                        | Client sa    | Client sampling date / time | [14-May-2015] | [14-May-2015] | -      | -      | -      |
| Compound   CAS Number                                  | ber LOR      | S Unit                      | ES1522077-001 | ES1522077-002 | 1      | İ      | 1      |
|                                                        |              |                             | Result        | Result        | Result | Result | Result |
| EP068A: Organochlorine Pesticides (OC) - Continued     |              |                             |               |               |        |        |        |
| <b>Endrin ketone</b> 53494-70-5                        | 70-5 0.05    | mg/kg                       | <0.05         |               |        |        |        |
| Methoxychlor 72-4                                      | 72-43-5 0.2  | mg/kg                       | <0.2          | ı             | ı      | ı      |        |
| <sup>^</sup> Sum of Aldrin + Dieldrin 309-00-2/60-57-1 | 57-1 0.05    | mg/kg                       | <0.05         |               |        |        |        |
| A Sum of DDD + DDE + DDT                               | 0.05         | mg/kg                       | <0.05         |               |        |        |        |
| EP068B: Organophosphorus Pesticides (OP)               |              |                             |               |               |        |        |        |
| Dichlorvos 62-73-7                                     | 73-7 0.05    | mg/kg                       | <0.05         | -             |        |        |        |
| Demeton-S-methyl 919-86-8                              | 36-8 0.05    | mg/kg                       | <0.05         |               |        |        |        |
| Monocrotophos 6923-22-4                                | 2-4 0.2      | mg/kg                       | <0.2          | ı             | ı      | ı      | ı      |
| Dimethoate 60-51-5                                     | 31-5 0.05    | mg/kg                       | <0.05         | -             | -      |        |        |
| <b>Diazinon</b> 333-41-5                               | 11-5 0.05    | mg/kg                       | <0.05         | -             | =      |        |        |
| Chlorpyrifos-methyl 5598-13-0                          | 3-0 0.05     | mg/kg                       | <0.05         | ı             |        | ı      |        |
| Parathion-methyl 298-00-0                              | 0.0          | mg/kg                       | <0.2          | -             |        | -      |        |
| Malathion 121-75-5                                     | 75-5 0.05    | mg/kg                       | <0.05         | -             | -      |        | -      |
| Fenthion 55-3                                          | 55-38-9 0.05 | mg/kg                       | <0.05         | ı             |        | ı      |        |
| Chlorpyrifos 2921-88-2                                 | 38-2 0.05    | mg/kg                       | <0.05         |               | =      | 1      |        |
| Parathion 56-38-2                                      | 38-2 0.2     | mg/kg                       | <0.2          | 1             | 1      | 1      | 1      |
| Pirimphos-ethyl 23505-41-1                             | 11-1 0.05    | mg/kg                       | <0.05         | I             | ı      | ı      |        |
| Chlorfenvinphos 470-90-6                               | 90-6 0.05    | mg/kg                       | <0.05         | -             |        |        |        |
| Bromophos-ethyl 4824-78-6                              | 78-6 0.05    | mg/kg                       | <0.05         |               |        |        |        |
| <b>Fenamiphos</b> 22224-92-6                           | 32-6 0.05    | mg/kg                       | <0.05         |               |        |        |        |
| Prothiofos 34643-46-4                                  | 16-4 0.05    | mg/kg                       | <0.05         | 1             | -      | -      | -      |
| <b>Ethion</b> 563-12-2                                 | 12-2 0.05    | mg/kg                       | <0.05         |               |        |        |        |
| Carbophenothion 786-19-6                               | 9-6 0.05     | mg/kg                       | <0.05         |               |        |        |        |
| Azinphos Methyl 86-5                                   | 86-50-0 0.05 | mg/kg                       | <0.05         |               |        |        |        |
| EP075(SIM)B: Polynuclear Aromatic Hydrocarbons         |              |                             |               |               |        |        |        |
| Naphthalene 91-20-3                                    | 20-3 0.5     | mg/kg                       | <0.5          | <0.5          |        |        |        |
| Acenaphthylene 208-96-8                                | 96-8 0.5     | mg/kg                       | <0.5          | <0.5          |        | -      | -      |
| Acenaphthene 83-3                                      | 83-32-9 0.5  | mg/kg                       | <0.5          | <0.5          | =      |        |        |
| Fluorene 86-73-7                                       | 73-7 0.5     | mg/kg                       | <0.5          | <0.5          |        | ı      |        |
| Phenanthrene 85-01-8                                   | 11-8 0.5     | mg/kg                       | <0.5          | <0.5          |        | ı      |        |
| Anthracene 120-12-7                                    | 12-7 0.5     | mg/kg                       | <0.5          | <0.5          |        |        |        |
| Fluoranthene 206-44-0                                  | 14-0 0.5     | mg/kg                       | <0.5          | <0.5          |        |        |        |
| <b>Pyrene</b> 129-00-0                                 | 0-00         | mg/kg                       | <0.5          | <0.5          |        | -      | -      |
| thracene                                               | 56-55-3 0.5  | mg/kg                       | <0.5          | <0.5          |        | -      | -      |
| <b>Chrysene</b> 218-01-9                               | 1-9 0.5      | mg/kg                       | <0.5          | <0.5          |        | -      |        |
|                                                        |              |                             |               |               |        |        |        |



: 5 of 6 : ES1522077 : PARSONS BRINCKERHOFF AUST P/L : 2201679B\_AS SYD WATER Analytical Results Project Client

Page Work Order

| Sub-Matrix: SOIL<br>(Matrix: SOIL)                                         |              | Client    | Client sample ID            | DUP1A AS      | DUP2A AS      | -      | -      | -      |
|----------------------------------------------------------------------------|--------------|-----------|-----------------------------|---------------|---------------|--------|--------|--------|
|                                                                            | Client       | sampling  | Client sampling date / time | [14-May-2015] | [14-May-2015] |        |        |        |
| Compound                                                                   | CAS Number L | LOR       | Unit                        | ES1522077-001 | ES1522077-002 |        |        |        |
|                                                                            |              |           |                             | Result        | Result        | Result | Result | Result |
| EP075(SIM)B: Polynuclear Aromatic Hydrocarbons - Continued                 | s - Continue | Þ         |                             |               |               |        |        |        |
| <b>Benzo(b+j)fluoranthene</b> 205-99-2 205-82-3                            | )5-82-3 (    | 0.5       | mg/kg                       | <0.5          | <0.5          | -      | -      |        |
| Benzo(k)fluoranthene 20                                                    | 207-08-9     | 0.5       | mg/kg                       | <0.5          | <0.5          | i      | i      | ı      |
| Benzo(a)pyrene 5                                                           | 50-32-8      | 0.5       | mg/kg                       | <0.5          | <0.5          | -      | I      |        |
| oyrene                                                                     | 193-39-5 (   | 0.5       | mg/kg                       | <0.5          | <0.5          | -      | -      |        |
| Dibenz(a.h)anthracene 5:                                                   | 53-70-3      | 0.5       | mg/kg                       | <0.5          | <0.5          | 1      | 1      |        |
| Benzo(g.h.i)perylene                                                       | 191-24-2     | 0.5       | mg/kg                       | <0.5          | <0.5          | 1      | ı      | -      |
| Sum of polycyclic aromatic hydrocarbons                                    | -            | 0.5       | mg/kg                       | <0.5          | <0.5          |        |        |        |
| ^ Benzo(a)pyrene TEQ (zero)                                                |              | 0.5       | mg/kg                       | <0.5          | <0.5          | -      | -      |        |
| A Benzo(a)pyrene TEQ (half LOR)                                            | 1            | 0.5       | mg/kg                       | 9.0           | 9'0           | i      | ı      |        |
| A Benzo(a)pyrene TEQ (LOR)                                                 |              | 0.5       | mg/kg                       | 1.2           | 1.2           | -      | -      |        |
| EP080/071: Total Petroleum Hydrocarbons                                    |              |           |                             |               |               |        |        |        |
| C6 - C9 Fraction                                                           |              | 10        | mg/kg                       | <10           | 1             | i      | 1      |        |
| C10 - C14 Fraction                                                         |              | 50        | mg/kg                       | <50           |               |        |        |        |
| C15 - C28 Fraction                                                         | -            | 100       | mg/kg                       | 170           |               |        |        |        |
| C29 - C36 Fraction                                                         |              | 100       | mg/kg                       | 260           | 1             | -      | -      | -      |
| △ C10 - C36 Fraction (sum)                                                 |              | 50        | mg/kg                       | 730           | 1             |        | -      |        |
| EP080/071: Total Recoverable Hydrocarbons - NEPM 2013                      |              | Fractions |                             |               |               |        |        |        |
| C6 - C10 Fraction                                                          | C6_C10       | 10        | mg/kg                       | <10           | -             | -      | -      |        |
| CG_C10-BTEX C6_C10-BTEX CG_C10-BTEX (F1)                                   |              | 10        | mg/kg                       | <10           | -             | -      | -      | -      |
| >C10 - C16 Fraction >C10                                                   | >C10_C16     | 50        | mg/kg                       | <50           | ı             | 1      | I      |        |
| >C16 - C34 Fraction                                                        |              | 100       | mg/kg                       | 520           | I             | 1      | ı      | I      |
| >C34 - C40 Fraction                                                        | -            | 100       | mg/kg                       | 630           |               |        |        |        |
| ^ >C10 - C40 Fraction (sum)                                                | 1            | 50        | mg/kg                       | 1150          | 1             | i      | 1      |        |
| <ul> <li>&gt;C10 - C16 Fraction minus Naphthalene</li> <li>(F2)</li> </ul> |              | 50        | mg/kg                       | <50           | 1             | 1      | 1      | -      |
| EP080: BTEXN                                                               |              |           |                             |               |               |        |        |        |
| Benzene 7                                                                  | 71-43-2 (    | 0.2       | mg/kg                       | <0.2          | -             | -      | -      |        |
| Toluene 10                                                                 | 108-88-3 (   | 0.5       | mg/kg                       | <0.5          |               |        |        |        |
| Ethylbenzene 10                                                            | 100-41-4 (   | 0.5       | mg/kg                       | <0.5          |               | -      | -      |        |
| meta- & para-Xylene 108-38-3 106-42-3                                      |              | 0.5       | mg/kg                       | <0.5          | 1             | -      | 1      |        |
|                                                                            | 95-47-6      | 0.5       | mg/kg                       | <0.5          | -             | -      |        |        |
| △ Sum of BTEX                                                              |              | 0.2       | mg/kg                       | <0.2          | 1             |        | -      |        |
| ^ Total Xylenes 133                                                        | 1330-20-7 (  | 0.5       | mg/kg                       | <0.5          | 1             | 1      | 1      |        |
| Naphthalene 9                                                              | 91-20-3      | -         | mg/kg                       | <b>\</b>      | -             | -      | -      | 1      |



: 6 of 6 : ES1522077 : PARSONS BRINCKERHOFF AUST P/L : 2201679B\_AS SYD WATER Analytical Results

Project Client

Page Work Order

| Sub-Matrix: SOIL                             |            | Clien       | Client sample ID            | DUP1A AS      | DUP2A AS      |        | 1      | I      |
|----------------------------------------------|------------|-------------|-----------------------------|---------------|---------------|--------|--------|--------|
| (Matrix: SOIL)                               |            |             |                             |               |               |        |        |        |
|                                              | Clie       | nt sampling | Client sampling date / time | [14-May-2015] | [14-May-2015] | -      | -      | -      |
| Compound                                     | CAS Number | LOR         | Unit                        | ES1522077-001 | ES1522077-002 | 1      |        |        |
|                                              |            |             |                             | Result        | Result        | Result | Result | Result |
| EP066S: PCB Surrogate                        |            |             |                             |               |               |        |        |        |
| Decachlorobiphenyl                           | 2051-24-3  | 0.1         | %                           | 75.0          |               | -      |        |        |
| EP068S: Organochlorine Pesticide Surrogate   |            |             |                             |               |               |        |        |        |
| Dibromo-DDE                                  | 21655-73-2 | 0.05        | %                           | 101           |               |        |        | -      |
| EP068T: Organophosphorus Pesticide Surrogate | ate        |             |                             |               |               |        |        |        |
| DEF                                          | 78-48-8    | 0.05        | %                           | 81.2          | 1             | -      | 1      | 1      |
| EP075(SIM)S: Phenolic Compound Surrogates    |            |             |                             |               |               |        |        |        |
| Phenol-d6                                    | 13127-88-3 | 0.5         | %                           | 111           | 82.5          |        |        |        |
| 2-Chlorophenol-D4                            | 93951-73-6 | 0.5         | %                           | 99.5          | 98.6          | -      |        | -      |
| 2.4.6-Tribromophenol                         | 118-79-6   | 0.5         | %                           | 87.2          | 79.0          |        |        |        |
| EP075(SIM)T: PAH Surrogates                  |            |             |                             |               |               |        |        |        |
| 2-Fluorobiphenyl                             | 321-60-8   | 0.5         | %                           | 108           | 92.6          | -      | 1      | 1      |
| Anthracene-d10                               | 1719-06-8  | 0.5         | %                           | 122           | 92.8          |        |        |        |
| 4-Terphenyl-d14                              | 1718-51-0  | 0.5         | %                           | 95.0          | 101           |        |        |        |
| EP080S: TPH(V)/BTEX Surrogates               |            |             |                             |               |               |        |        |        |
| 1.2-Dichloroethane-D4                        | 17060-07-0 | 0.2         | %                           | 106           | -             | -      |        | -      |
| Toluene-D8                                   | 2037-26-5  | 0.2         | %                           | 109           | 1             | 1      |        | -      |
| 4-Bromofluorobenzene                         | 460-00-4   | 0.2         | %                           | 84.4          | 1             | 1      | 1      | 1      |



## QUALITY CONTROL REPORT

| : 1 of 11   | Environmental Division Sydney                 | 277-289 Woodpark Road Smithfield NSW Australia 2164 |                       | : +61-2-8784 8555 | +61-2-8784 8500   | NEPM 2013 Schedule B(3) and ALS QCS3 requirement | : 15-May-2015         | : 18-May-2015           | : 22-May-2015 | .:2                     | 2 :                     |
|-------------|-----------------------------------------------|-----------------------------------------------------|-----------------------|-------------------|-------------------|--------------------------------------------------|-----------------------|-------------------------|---------------|-------------------------|-------------------------|
| Page        | Laboratory<br>Contact                         | Address                                             | E-mail                | Telephone         | Facsimile         | QC Level                                         | Date Samples Received | Date Analysis Commenced | Issue Date    | No. of samples received | No. of samples analysed |
| : ES1522077 | PARSONS BRINCKERHOFF AUST P/L MR DAN ROBINSON | : GPO BOX 5394<br>SYDNEY NSW, AUSTRALIA 2001        | danrobinson@pb.com.au | : +61 02 92725100 | : +61 02 92725101 | : 2201679B_AS SYD WATER                          |                       | . 76568                 |               | ASHFIELD                |                         |
| Work Order  | Client<br>Contact                             | Address                                             | E-mail                | Telephone         | Facsimile         | Project                                          | Order number          | C-O-C number            | Sampler       | Site                    | Quote number            |

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
  - Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits



#### Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out ir Accreditation Category compliance with procedures specified in 21 CFR Part 11. Position Signatories NATA Accredited Laboratory 825

compliance with SO/IEC 17025. Accredited for WORLD RECOGNISED ACCREDITATION

| Sydney Inorganics      | Sydney Organics        | Sydney Inorganics  |
|------------------------|------------------------|--------------------|
|                        |                        |                    |
| Senior Organic Chemist | Senior Organic Chemist | Metals Coordinator |
| Pabi Subba             | Pabi Subba             | Shobhna Chandra    |



PARSONS BRINCKERHOFF AUST P/L 2201679B\_AS SYD WATER 2 of 11 ES1522077 Work Order Project Client

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to primary sample extract/digestate dilution

Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot Key

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

# = Indicates failed QC



3 of 11 ES1522077 PARSONS BRINCKERHOFF AUST P/L 2201679B\_AS SYD WATER Page Work Order Project Client

## Laboratory Duplicate (DUP) Report

| The quality control terrifor the Relative Percent No Limit, Result between 1 | n Laboratory Duplicate refe<br>Deviation (RPD) of Labora<br>10 and 20 times LOR:- 0% - 50 | The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison No Limit; Result between 10 and 20 times LOR:- 0% - 50%; Result > 20 times LOR:0% - 20%. | ratory duplicates p<br>/38 and are depend | provide inforr<br>dent on the | nation regardir<br>magnitude of | ig method precisi<br>results in compari | l precision and sample het<br>comparison to the level of | terogeneity. T | and sample heterogeneity. The permitted ranges to the level of reporting: Result < 10 times LOR: |
|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-------------------------------|---------------------------------|-----------------------------------------|----------------------------------------------------------|----------------|--------------------------------------------------------------------------------------------------|
| Sub-Matrix: SOIL                                                             |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                           |                               |                                 | Laboratory I                            | Duplicate (DUP) Report                                   |                |                                                                                                  |
| Laboratory sample ID                                                         | Client sample ID                                                                          | Method: Compound                                                                                                                                                                                                                                                                                                                                                                                                                     | CAS Number                                | LOR                           | Unit                            | Original Result                         | Duplicate Result                                         | RPD (%)        | Recovery Limits (%)                                                                              |
| EA055: Moisture Content (QC Lot: 103915)                                     | ent (QC Lot: 103915)                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                           |                               |                                 |                                         |                                                          |                |                                                                                                  |
| ES1522077-002                                                                | DUP2A AS                                                                                  | EA055-103: Moisture Content (dried @ 103°C)                                                                                                                                                                                                                                                                                                                                                                                          | -                                         | _                             | %                               | 7.9                                     | 9.9                                                      | 17.5           | No Limit                                                                                         |
| ES1522110-001                                                                | Anonymous                                                                                 | EA055-103: Moisture Content (dried @ 103°C)                                                                                                                                                                                                                                                                                                                                                                                          | -                                         | _                             | %                               | 16.7                                    | 15.7                                                     | 60.9           | %0 - %0                                                                                          |
| EG005T: Total Metals by ICP-AES                                              | by ICP-AES (QC Lot: 104780)                                                               | 780)                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                           |                               |                                 |                                         |                                                          |                |                                                                                                  |
| ES1522014-002                                                                | Anonymous                                                                                 | EG005T: Cadmium                                                                                                                                                                                                                                                                                                                                                                                                                      | 7440-43-9                                 | _                             | mg/kg                           | ۲                                       | ₹                                                        | 0.00           | No Limit                                                                                         |
|                                                                              |                                                                                           | EG005T: Chromium                                                                                                                                                                                                                                                                                                                                                                                                                     | 7440-47-3                                 | 2                             | mg/kg                           | 28                                      | 29                                                       | 0.00           | %0 - %0                                                                                          |
|                                                                              |                                                                                           | EG005T: Nickel                                                                                                                                                                                                                                                                                                                                                                                                                       | 7440-02-0                                 | 2                             | mg/kg                           | 9                                       | 9                                                        | 16.9           | No Limit                                                                                         |
|                                                                              |                                                                                           | EG005T: Arsenic                                                                                                                                                                                                                                                                                                                                                                                                                      | 7440-38-2                                 | 2                             | mg/kg                           | 9                                       | <5                                                       | 0.00           | No Limit                                                                                         |
|                                                                              |                                                                                           | EG005T: Copper                                                                                                                                                                                                                                                                                                                                                                                                                       | 7440-50-8                                 | 2                             | mg/kg                           | ω                                       | 0                                                        | 0.00           | No Limit                                                                                         |
|                                                                              |                                                                                           | EG005T: Lead                                                                                                                                                                                                                                                                                                                                                                                                                         | 7439-92-1                                 | 2                             | mg/kg                           | 10                                      | 10                                                       | 0.00           | No Limit                                                                                         |
|                                                                              |                                                                                           | EG005T: Zinc                                                                                                                                                                                                                                                                                                                                                                                                                         | 7440-66-6                                 | 2                             | mg/kg                           | 18                                      | 19                                                       | 9.84           | No Limit                                                                                         |
| ES1522077-001                                                                | DUP1A AS                                                                                  | EG005T: Cadmium                                                                                                                                                                                                                                                                                                                                                                                                                      | 7440-43-9                                 | _                             | mg/kg                           | ₹                                       | ₹                                                        | 0.00           | No Limit                                                                                         |
|                                                                              |                                                                                           | EG005T: Chromium                                                                                                                                                                                                                                                                                                                                                                                                                     | 7440-47-3                                 | 2                             | mg/kg                           | 40                                      | 30                                                       | 28.1           | %0 - %0                                                                                          |
|                                                                              |                                                                                           | EG005T: Nickel                                                                                                                                                                                                                                                                                                                                                                                                                       | 7440-02-0                                 | 2                             | mg/kg                           | 34                                      | 31                                                       | 8.39           | %05 - %0                                                                                         |
|                                                                              |                                                                                           | EG005T: Arsenic                                                                                                                                                                                                                                                                                                                                                                                                                      | 7440-38-2                                 | 2                             | mg/kg                           | <5                                      | <5                                                       | 0.00           | No Limit                                                                                         |
|                                                                              |                                                                                           | EG005T: Copper                                                                                                                                                                                                                                                                                                                                                                                                                       | 7440-50-8                                 | 22                            | mg/kg                           | 13                                      | 17                                                       | 26.8           | No Limit                                                                                         |
|                                                                              |                                                                                           | EG005T: Lead                                                                                                                                                                                                                                                                                                                                                                                                                         | 7439-92-1                                 | 2                             | mg/kg                           | 14                                      | 14                                                       | 0.00           | No Limit                                                                                         |
|                                                                              |                                                                                           | EG005T: Zinc                                                                                                                                                                                                                                                                                                                                                                                                                         | 7440-66-6                                 | 2                             | mg/kg                           | 34                                      | 33                                                       | 3.58           | No Limit                                                                                         |
| EG035T: Total Recove                                                         | EG035T: Total Recoverable Mercury by FIMS (G                                              | (QC Lot: 104781)                                                                                                                                                                                                                                                                                                                                                                                                                     |                                           |                               |                                 |                                         |                                                          |                |                                                                                                  |
| ES1522014-002                                                                | Anonymous                                                                                 | EG035T: Mercury                                                                                                                                                                                                                                                                                                                                                                                                                      | 7439-97-6                                 | 0.1                           | mg/kg                           | <0.1                                    | <0.1                                                     | 00.00          | No Limit                                                                                         |
| ES1522077-001                                                                | DUP1A AS                                                                                  | EG035T: Mercury                                                                                                                                                                                                                                                                                                                                                                                                                      | 7439-97-6                                 | 0.1                           | mg/kg                           | <0.1                                    | <0.1                                                     | 0.00           | No Limit                                                                                         |
| EP066: Polychlorinated Biphenyls                                             | ed Biphenyls (PCB) (QC Lot: 101746)                                                       | ot: 101746)                                                                                                                                                                                                                                                                                                                                                                                                                          |                                           |                               |                                 |                                         |                                                          |                |                                                                                                  |
| ES1522075-001                                                                | Anonymous                                                                                 | EP066: Total Polychlorinated biphenyls                                                                                                                                                                                                                                                                                                                                                                                               |                                           | 0.1                           | mg/kg                           | <0.1                                    | <0.1                                                     | 0.00           | No Limit                                                                                         |
| EP068A: Organochlor                                                          | EP068A: Organochlorine Pesticides (OC) (QC Lot: 101747)                                   | .ot: 101747)                                                                                                                                                                                                                                                                                                                                                                                                                         |                                           |                               |                                 |                                         |                                                          |                |                                                                                                  |
| ES1522075-001                                                                | Anonymous                                                                                 | EP068: 4.4`-DDD                                                                                                                                                                                                                                                                                                                                                                                                                      | 72-54-8                                   | 0.05                          | mg/kg                           | <0.05                                   | <0.05                                                    | 0.00           | No Limit                                                                                         |
|                                                                              |                                                                                           | EP068: 4.4'-DDE                                                                                                                                                                                                                                                                                                                                                                                                                      | 72-55-9                                   | 0.05                          | mg/kg                           | <0.05                                   | <0.05                                                    | 0.00           | No Limit                                                                                         |
|                                                                              |                                                                                           | EP068: Aldrin                                                                                                                                                                                                                                                                                                                                                                                                                        | 309-00-2                                  | 0.05                          | mg/kg                           | <0.05                                   | <0.05                                                    | 0.00           | No Limit                                                                                         |
|                                                                              |                                                                                           | EP068: alpha-BHC                                                                                                                                                                                                                                                                                                                                                                                                                     | 319-84-6                                  | 0.05                          | mg/kg                           | <0.05                                   | <0.05                                                    | 0.00           | No Limit                                                                                         |
|                                                                              |                                                                                           | EP068: alpha-Endosulfan                                                                                                                                                                                                                                                                                                                                                                                                              | 9-86-656                                  | 0.05                          | mg/kg                           | <0.05                                   | <0.05                                                    | 0.00           | No Limit                                                                                         |
|                                                                              |                                                                                           | EP068: beta-BHC                                                                                                                                                                                                                                                                                                                                                                                                                      | 319-85-7                                  | 0.05                          | mg/kg                           | <0.05                                   | <0.05                                                    | 0.00           | No Limit                                                                                         |
|                                                                              |                                                                                           | EP068: beta-Endosulfan                                                                                                                                                                                                                                                                                                                                                                                                               | 33213-65-9                                | 0.05                          | mg/kg                           | <0.05                                   | <0.05                                                    | 00.00          | No Limit                                                                                         |
|                                                                              |                                                                                           | EP068: cis-Chlordane                                                                                                                                                                                                                                                                                                                                                                                                                 | 5103-71-9                                 | 0.05                          | mg/kg                           | <0.05                                   | <0.05                                                    | 0.00           | No Limit                                                                                         |
|                                                                              |                                                                                           | EP068: delta-BHC                                                                                                                                                                                                                                                                                                                                                                                                                     | 319-86-8                                  | 0.05                          | mg/kg                           | <0.05                                   | <0.05                                                    | 0.00           | No Limit                                                                                         |
|                                                                              |                                                                                           | EP068: Dieldrin                                                                                                                                                                                                                                                                                                                                                                                                                      | 60-57-1                                   | 0.05                          | mg/kg                           | <0.05                                   | <0.05                                                    | 0.00           | No Limit                                                                                         |
|                                                                              |                                                                                           | EP068: Endosulfan sulfate                                                                                                                                                                                                                                                                                                                                                                                                            | 1031-07-8                                 | 0.05                          | mg/kg                           | <0.05                                   | <0.05                                                    | 0.00           | No Limit                                                                                         |
|                                                                              |                                                                                           | EP068: Endrin                                                                                                                                                                                                                                                                                                                                                                                                                        | 72-20-8                                   | 0.05                          | mg/kg                           | <0.05                                   | <0.05                                                    | 0.00           | No Limit                                                                                         |



ES1522077

Work Order

Client Project

4 of 11

2201679B\_AS SYD WATER

Recovery Limits (%) No Limit No Limit No Limit No Limit No Limit No Limit No Limit No Limit No Limit No Limit No Limit No Limit No Limit No Limit No Limit No Limit No Limit No Limit No Limit No Limit No Limit No Limit No Limit No Limit No Limit No Limit No Limit No Limit No Limit No Limit No Limit No Limit RPD (%) 0.0 0.00 0.00 0.00 0.00 0.00 0.00 00.0 00.0 0.00 0.0 0.0 0.00 00.0 0.00 0.00 0.00 0.00 00.0 0.00 0.00 0.00 0.00 00.0 00.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Laboratory Duplicate (DUP) Report Original Result Duplicate Result <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.2 <0.05 <0.05 <0.05 <0.05 <0.05 <0.2 <0.5 <0.2 <0.5 <0.5 <0.5 <0.2 <0.2 <0.5 <0.5 <0.5 <0.5 <0.5 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.2 <0.2 <0.5 <0.5 <0.5 <0.2 <0.2 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.2 mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg Unit 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 LOR 0.05 0.2 0.2 0.05 0.05 0.05 0.05 0.2 0.2 0.5 0.5 0.5 0.5 0.5 0.2 0.5 0.5 55-38-9 50-32-8 208-96-8 56-55-3 205-82-3 53494-70-5 50-29-3 72-43-5 191-24-2 CAS Number 7421-93-4 58-89-9 76-44-8 1024-57-3 118-74-1 5103-74-2 86-50-0 4824-78-6 786-19-6 470-90-6 2921-88-2 5598-13-0 919-86-8 333-41-5 62-73-7 60-51-5 563-12-2 22224-92-6 121-75-5 34643-46-4 6923-22-4 56-38-2 298-00-0 83-32-9 20-12-7 205-99-2 207-08-9 23505-41-1 EP075(SIM): Benzo(a)pyrene TEQ (zero) EP075(SIM): Benzo(b+j)fluoranthene EP068: Hexachlorobenzene (HCB) EP075(SIM): Benzo(k)fluoranthene EP075(SIM): Benzo(g.h.i)perylene EP075(SIM): Benz(a)anthracene EP075(SIM): Acenaphthylene EP075(SIM): Benzo(a)pyrene EP075(SIM): Acenaphthene EP068: Heptachlor epoxide EP068: Chlorpyrifos-methyl EP068: Demeton-S-methyl EP068: Carbophenothion EP075(SIM): Anthracene EP068: Bromophos-ethyl EP068: Parathion-methyl EP068A: Organochlorine Pesticides (OC) (QC Lot: 101747) - continued EP068: Endrin aldehyde EP068: Azinphos Methyl EP068: Chlorfenvinphos EP068: trans-Chlordane EP068: Monocrotophos EP068: Pirimphos-ethyl EP068: Endrin ketone EP075(SIM)B: Polynuclear Aromatic Hydrocarbons (QC Lot: 101734) EP068: Methoxychlor EP068: gamma-BHC EP068: Chlorpyrifos EP068: Fenamiphos EP068: Heptachlor EP068: Dimethoate EP068: Dichlorvos EP068: Prothiofos EP068: Malathion EP068: Parathion EP068: 4.4'-DDT EP068: Fenthion EP068: Diazinon EP068B: Organophosphorus Pesticides (OP) (QC Lot: 101747) EP068: Ethion Client sample ID Anonymous Anonymous Anonymous Laboratory sample ID ES1522075-001 ES1522039-021 Sub-Matrix: SOIL ES1522075-001



ES1522077

Work Order

Client Project

5 of 11

2201679B\_AS SYD WATER

Recovery Limits (%) No Limit No Limit No Limit No Limit No Limit No Limit No Limit No Limit No Limit No Limit No Limit No Limit No Limit No Limit No Limit No Limit No Limit No Limit No Limit No Limit No Limit No Limit No Limit No Limit No Limit No Limit No Limit No Limit No Limit No Limit No Limit No Limit No Limit No Limit RPD (%) 0.00 0.00 0.0 00.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 00.0 0.00 0.0 0.00 0.00 00.0 0.00 0.00 0.00 0.00 00.0 0.00 0.00 0.00 8 8 0.00 0.00 0.0 0.0 0.00 Laboratory Duplicate (DUP) Report Original Result Duplicate Result <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg Unit LOR 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 206-44-0 56-55-3 50-32-8 85-01-8 120-12-7 120-12-7 207-08-9 CAS Number 218-01-9 53-70-3 206-44-0 193-39-5 91-20-3 29-00-0 83-32-9 208-96-8 56-55-3 50-32-8 205-99-2 205-82-3 191-24-2 207-08-9 218-01-9 53-70-3 193-39-5 91-20-3 85-01-8 29-00-0 83-32-9 208-96-8 205-99-2 205-82-3 191-24-2 86-73-7 86-73-7 EP075(SIM): Benzo(a)pyrene TEQ (zero) EP075(SIM): Benzo(a)pyrene TEQ (zero) EP075(SIM): Sum of polycyclic aromatic EP075(SIM): Sum of polycyclic aromatic EP075(SIM): Benzo(b+j)fluoranthene EP075(SIM): Indeno(1.2.3.cd)pyrene EP075(SIM): Indeno(1.2.3.cd)pyrene EP075(SIM): Benzo(b+j)fluoranthene EP075(SIM)B: Polynuclear Aromatic Hydrocarbons (QC Lot: 101734) - continued EP075(SIM): Dibenz(a.h)anthracene EP075(SIM): Dibenz(a.h)anthracene EP075(SIM): Benzo(k)fluoranthene EP075(SIM): Benzo(k)fluoranthene EP075(SIM): Benzo(g.h.i)perylene EP075(SIM): Benzo(g.h.i)perylene EP075(SIM): Benz(a)anthracene EP075(SIM): Benz(a)anthracene EP075(SIM): Acenaphthylene EP075(SIM): Benzo(a)pyrene EP075(SIM): Acenaphthylene EP075(SIM): Benzo(a)pyrene EP075(SIM): Acenaphthene EP075(SIM): Acenaphthene EP075(SIM): Phenanthrene EP075(SIM): Phenanthrene EP075(SIM): Fluoranthene EP075(SIM): Fluoranthene EP075(SIM): Naphthalene EP075(SIM): Naphthalene EP075(SIM): Anthracene EP075(SIM): Anthracene EP075(SIM): Chrysene EP075(SIM): Chrysene EP075(SIM): Fluorene EP075(SIM): Fluorene hydrocarbons hydrocarbons EP075(SIM)B: Polynuclear Aromatic Hydrocarbons (QC Lot: 101745) EP075(SIM): Pyrene EP075(SIM): Pyrene Client sample ID Anonymous Anonymous Anonymous Laboratory sample ID ES1522075-001 ES1522055-002 Sub-Matrix: SOIL ES1522039-021



ES1522077

Work Order

Client Project

6 of 11

2201679B\_AS SYD WATER

Recovery Limits (%) No Limit No Limit No Limit No Limit No Limit No Limit No Limit No Limit No Limit No Limit No Limit No Limit No Limit No Limit No Limit No Limit No Limit No Limit No Limit No Limit No Limit No Limit No Limit No Limit No Limit No Limit No Limit No Limit No Limit No Limit No Limit RPD (%) 0.00 0.00 00.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0 0.00 0.00 0.00 0.00 Laboratory Duplicate (DUP) Report Original Result Duplicate Result <0.5 <0.5 <0.5 <100 <100 ×100 ×100 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.2 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 410 5 5 <0.2 <0.5 710 <sup>2</sup>20 <50 ۲ v <100 <100 <100 <100 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.2 0.2 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 10 100 <0.2 **0.**2 <0.5 ×10 <50 ×10 <50 <0.5 ۲ v mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg Unit LOR 0.5 0.5 0.2 0.2 0.5 0.5 0.5 0.5 0.5 0.5 100 5 10 3 0.5 0.5 0.5 0.5 9 9 20 5 5 0.5 <del>-</del> 0.5 \_ C6\_C10 100-41-4 108-38-3 108-88-3 85-01-8 C6\_C10 CAS Number 218-01-9 53-70-3 206-44-0 193-39-5 91-20-3 29-00-0 -1 >C10 C16 71-43-2 08-38-3 106-42-3 95-47-6 08-88-3 91-20-3 71-43-2 95-47-6 91-20-3 86-73-7 100-41-4 06-42-3 EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions (QC Lot: 101728) EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions (QC Lot: 101744) EP075(SIM): Sum of polycyclic aromatic EP075(SIM): Indeno(1.2.3.cd)pyrene EP075(SIM): Dibenz(a.h)anthracene EP075(SIM)B: Polynuclear Aromatic Hydrocarbons (QC Lot: 101745)- continued EP080: meta- & para-Xylene EP071: >C16 - C34 Fraction EP080: meta- & para-Xylene EP071: >C34 - C40 Fraction EP071: >C10 - C16 Fraction EP075(SIM): Phenanthrene EP071: C15 - C28 Fraction EP071: C29 - C36 Fraction EP071: C10 - C14 Fraction EP075(SIM): Fluoranthene EP075(SIM): Naphthalene EP080: C6 - C10 Fraction EP080: C6 - C10 Fraction EP080: C6 - C9 Fraction EP080: C6 - C9 Fraction EP075(SIM): Chrysene EP075(SIM): Fluorene hydrocarbons EP080: Ethylbenzene EP080: Ethylbenzene EP075(SIM): Pyrene EP080: Naphthalene EP080: Naphthalene EP080: ortho-Xylene EP080: ortho-Xylene EP080: Benzene EP080: Benzene EP080: Toluene EP080: Toluene EP080/071: Total Petroleum Hydrocarbons (QC Lot: 101728) EP080/071: Total Petroleum Hydrocarbons (QC Lot: 101744) Client sample ID Anonymous Anonymous Anonymous Anonymous Anonymous Anonymous EP080: BTEXN (QC Lot: 101728) Anonymous Anonymous Anonymous Laboratory sample ID ES1522055-005 ES1522055-005 ES1522024-002 ES1522055-005 ES1522024-002 ES1522024-002 ES1522075-001 ES1522075-001 Sub-Matrix: SOIL ES1522075-001



PARSONS BRINCKERHOFF AUST P/L 2201679B\_AS SYD WATER 7 of 11 ES1522077 Work Order Project Client

## Method Blank (MB) and Laboratory Control Spike (LCS) Report

parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

| -                                                         | •          |      |       |                   |               |                                       |                     |            |
|-----------------------------------------------------------|------------|------|-------|-------------------|---------------|---------------------------------------|---------------------|------------|
| Sub-Matrix: SOIL                                          |            |      |       | Method Blank (MB) |               | Laboratory Control Spike (LCS) Report | S) Report           |            |
|                                                           | -          |      |       | Кероп             | Spike         | Spike Recovery (%)                    | Recovery Limits (%) | Limits (%) |
| Method: Compound                                          | CAS Number | LOR  | Unit  | Result            | Concentration | SJ7                                   | Гом                 | High       |
| EG005T: Total Metals by ICP-AES (QCLot: 104780)           |            |      |       |                   |               |                                       |                     |            |
| EG005T: Arsenic                                           | 7440-38-2  | 5    | mg/kg | <5                | 21.7 mg/kg    | 104                                   | 92                  | 130        |
| EG005T: Cadmium                                           | 7440-43-9  | _    | mg/kg | ₹                 | 4.64 mg/kg    | 95.0                                  | 87                  | 121        |
| EG005T: Chromium                                          | 7440-47-3  | 2    | mg/kg | \$                | 43.9 mg/kg    | 91.9                                  | 80                  | 136        |
| EG005T: Copper                                            | 7440-50-8  | 5    | mg/kg | <5                | 32 mg/kg      | 114                                   | 63                  | 127        |
| EG005T: Lead                                              | 7439-92-1  | 5    | mg/kg | <5                | 40 mg/kg      | 92.3                                  | 86                  | 124        |
| EG005T: Nickel                                            | 7440-02-0  | 2    | mg/kg | \$                | 55 mg/kg      | 103                                   | 93                  | 131        |
| EG005T: Zinc                                              | 7440-66-6  | 5    | mg/kg | <5                | 60.8 mg/kg    | 96.0                                  | 81                  | 133        |
| EG035T: Total Recoverable Mercury by FIMS (QCLot: 104781) | 4781)      |      |       |                   |               |                                       |                     |            |
| EG035T: Mercury                                           | 7439-97-6  | 0.1  | mg/kg | <0.1              | 2.57 mg/kg    | 98.5                                  | 70                  | 105        |
| EP066: Polychlorinated Biphenyls (PCB) (QCLot: 101746)    |            |      |       |                   |               |                                       |                     |            |
| EP066: Total Polychlorinated biphenyls                    |            | 0.1  | mg/kg | <0.1              | 1 mg/kg       | 101                                   | 57                  | 117        |
| EP068A: Organochlorine Pesticides (OC) (QCLot: 101747)    |            |      |       |                   |               |                                       |                     |            |
| EP068: 4.4'-DDD                                           | 72-54-8    | 0.05 | mg/kg | <0.05             | 0.5 mg/kg     | 97.2                                  | 92                  | 120        |
| EP068: 4.4'-DDE                                           | 72-55-9    | 0.05 | mg/kg | <0.05             | 0.5 mg/kg     | 97.6                                  | 69                  | 117        |
| EP068: 4.4'-DDT                                           | 50-29-3    | 0.2  | mg/kg | <0.2              | 0.5 mg/kg     | 96.0                                  | 29                  | 127        |
| EP068: Aldrin                                             | 309-00-2   | 0.05 | mg/kg | <0.05             | 0.5 mg/kg     | 102                                   | 89                  | 118        |
| EP068: alpha-BHC                                          | 319-84-6   | 0.05 | mg/kg | <0.05             | 0.5 mg/kg     | 110                                   | 71                  | 113        |
| EP068: alpha-Endosulfan                                   | 9-86-656   | 0.05 | mg/kg | <0.05             | 0.5 mg/kg     | 98.8                                  | 69                  | 119        |
| EP068: beta-BHC                                           | 319-85-7   | 0.05 | mg/kg | <0.05             | 0.5 mg/kg     | 100                                   | 69                  | 119        |
| EP068: beta-Endosulfan                                    | 33213-65-9 | 0.05 | mg/kg | <0.05             | 0.5 mg/kg     | 96.8                                  | 92                  | 120        |
| EP068: cis-Chlordane                                      | 5103-71-9  | 0.05 | mg/kg | <0.05             | 0.5 mg/kg     | 97.0                                  | 29                  | 121        |
| EP068: delta-BHC                                          | 319-86-8   | 0.05 | mg/kg | <0.05             | 0.5 mg/kg     | 99.1                                  | 65                  | 113        |
| EP068: Dieldrin                                           | 60-57-1    | 0.05 | mg/kg | <0.05             | 0.5 mg/kg     | 0.66                                  | 99                  | 118        |
| EP068: Endosulfan sulfate                                 | 1031-07-8  | 0.05 | mg/kg | <0.05             | 0.5 mg/kg     | 102                                   | 09                  | 124        |
| EP068: Endrin                                             | 72-20-8    | 0.05 | mg/kg | <0.05             | 0.5 mg/kg     | 104                                   | 29                  | 123        |
| EP068: Endrin aldehyde                                    | 7421-93-4  | 0.05 | mg/kg | <0.05             | 0.5 mg/kg     | 99.1                                  | 22                  | 115        |
| EP068: Endrin ketone                                      | 53494-70-5 | 0.05 | mg/kg | <0.05             | 0.5 mg/kg     | 100                                   | 65                  | 123        |
| EP068: gamma-BHC                                          | 58-89-9    | 0.05 | mg/kg | <0.05             | 0.5 mg/kg     | 102                                   | 71                  | 115        |
| EP068: Heptachlor                                         | 76-44-8    | 0.05 | mg/kg | <0.05             | 0.5 mg/kg     | 102                                   | 89                  | 116        |
| EP068: Heptachlor epoxide                                 | 1024-57-3  | 0.05 | mg/kg | <0.05             | 0.5 mg/kg     | 9.66                                  | 89                  | 116        |
| EP068: Hexachlorobenzene (HCB)                            | 118-74-1   | 0.05 | mg/kg | <0.05             | 0.5 mg/kg     | 98.3                                  | 99                  | 122        |
| EP068: Methoxychlor                                       | 72-43-5    | 0.2  | mg/kg | <0.2              | 0.5 mg/kg     | 95.9                                  | 65                  | 129        |
| EP068: trans-Chlordane                                    | 5103-74-2  | 0.05 | mg/kg | <0.05             | 0.5 mg/kg     | 97.0                                  | 89                  | 120        |
| EP068B: Organophosphorus Pesticides (OP) (QCLot: 101747)  | 1747)      |      |       |                   |               |                                       |                     |            |



8 of 11 ES1522077

Work Order

Client Project

2201679B\_AS SYD WATER

115 116 113 123 123 114 128 117 126 124 118 120 120 122 122 123 23 123 121 122 118 123 123 113 123 124 123 25 Recovery Limits (%) VOJ 76 73 29 68 67 70 68 68 64 64 70 70 70 71 54 77 12 81 72 77 77 98 67 Laboratory Control Spike (LCS) Report Spike Recovery (%) 100.0 93.9 96.4 97.9 95.0 94.5 87.9 88.2 88.3 97.6 98.6 89.6 89.8 0.66 82.1 81.2 94.7 98.2 89.3 88.4 96.6 105 98.2 90.6 100 89.3 103 100 101 Concentration 0.5 mg/kg 0.5 mg/kg 0.5 mg/kg 0.5 mg/kg 0.5 mg/kg 0.5 mg/kg 0.5 mg/kg 0.5 mg/kg 0.5 mg/kg 0.5 mg/kg 0.5 mg/kg 0.5 mg/kg 0.5 mg/kg 0.5 mg/kg 0.5 mg/kg 0.5 mg/kg 0.5 mg/kg 0.5 mg/kg 6 mg/kg 6 mg/kg 6 mg/kg 6 mg/kg 6 mg/kg 6 mg/kg 6 mg/kg 6 mg/kg 6 mg/kg 6 mg/kg 6 mg/kg 6 mg/kg 6 mg/kg 6 mg/kg 6 mg/kg 6 mg/kg Method Blank (MB) Result <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.2 <0.5 <0.2 <0.2 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 **0.**2 mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg Unit 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 LOR 0.05 0.05 0.05 0.2 0.2 0.2 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 EP068B: Organophosphorus Pesticides (OP) (QCLot: 101747) - continue CAS Number 60-51-5 50-32-8 85-01-8 83-32-9 786-19-6 2921-88-2 333-41-5 563-12-2 22224-92-6 298-00-0 205-82-3 218-01-9 129-00-0 86-50-0 1824-78-6 5598-13-0 919-86-8 62-73-7 55-38-9 121-75-5 6923-22-4 56-38-2 83-32-9 208-96-8 205-99-2 191-24-2 207-08-9 53-70-3 206-44-0 86-73-7 193-39-5 470-90-6 23505-41-1 34643-46-4 120-12-7 56-55-3 91-20-3 EP075(SIM)B: Polynuclear Aromatic Hydrocarbons (QCLot: 101734) EP075(SIM)B: Polynuclear Aromatic Hydrocarbons (QCLot: 101745) EP075(SIM): Benzo(b+j)fluoranthene EP075(SIM): Indeno(1.2.3.cd)pyrene EP075(SIM): Dibenz(a.h)anthracene EP075(SIM): Benzo(k)fluoranthene EP075(SIM): Benzo(g.h.i)perylene EP075(SIM): Benz(a)anthracene EP075(SIM): Benzo(a)pyrene EP075(SIM): Acenaphthylene EP075(SIM): Acenaphthene EP075(SIM): Acenaphthene EP075(SIM): Phenanthrene EP068: Chlorpyrifos-methyl EP075(SIM): Fluoranthene EP068: Demeton-S-methyl EP075(SIM): Naphthalene EP068: Carbophenothion EP068: Parathion-methyl EP075(SIM): Anthracene EP068: Azinphos Methyl EP068: Bromophos-ethyl EP068: Chlorfenvinphos EP068: Pirimphos-ethyl EP068: Monocrotophos EP075(SIM): Chrysene EP075(SIM): Fluorene EP075(SIM): Pyrene EP068: Fenamiphos EP068: Chlorpyrifos EP068: Dimethoate Method: Compound EP068: Dichlorvos EP068: Prothiofos EP068: Malathion EP068: Parathion EP068: Diazinon EP068: Fenthion Sub-Matrix: SOIL EP068: Ethion



9 of 11 ES1522077 PARSONS BRINCKERHOFF AUST P/L 2201679B\_AS SYD WATER

Page Work Order

Client Project

| Sub-Matrix: SOIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |             |       | Method Blank (MB) |               | Laboratory Control Spike (LCS) Report | S) Report           |            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-------------|-------|-------------------|---------------|---------------------------------------|---------------------|------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |             |       | Report            | Spike         | Spike Recovery (%)                    | Recovery Limits (%) | Limits (%) |
| Method: Compound                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CAS Number                  | LOR         | Unit  | Result            | Concentration | SO7                                   | Low                 | High       |
| EP075(SIM)B: Polynuclear Aromatic Hydrocarbons (QCLot: 101745) - continued                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ot: 101745) - con           | tinued      |       |                   |               |                                       |                     |            |
| EP075(SIM): Acenaphthylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 208-96-8                    | 0.5         | mg/kg | <0.5              | 6 mg/kg       | 86.4                                  | 77                  | 123        |
| EP075(SIM): Anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 120-12-7                    | 0.5         | mg/kg | <0.5              | 6 mg/kg       | 97.3                                  | 62                  | 123        |
| EP075(SIM): Benz(a)anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 56-55-3                     | 0.5         | mg/kg | <0.5              | 6 mg/kg       | 94.2                                  | 73                  | 121        |
| EP075(SIM): Benzo(a)pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 50-32-8                     | 0.5         | mg/kg | <0.5              | 6 mg/kg       | 95.4                                  | 9/                  | 122        |
| EP075(SIM): Benzo(b+j)fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 202-99-2                    | 0.5         | mg/kg | <0.5              | 6 mg/kg       | 101                                   | 70                  | 118        |
| TDOTE/CLAM. Dane / L. D. Committee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 205-82-3                    | 4           | ما/مع | 7                 | 2//22         | 9,0                                   | 7.0                 | 7          |
| Thorstones and the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of t | 2 +2 +00                    | 5 4         | 5//5w | ) (               | g Mgm 9       | 0.00                                  | 2,                  | 100        |
| EPO/3(3M). Benzo(k)illuolantinene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 218 01 0                    | 5. C        | 9/9m  | 0.0               | o mg/kg       | 92.2                                  | - 00                | 123        |
| EPO/3(SIM): Oilyselle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 53-70-3                     | 5. C        | ma/ka | 5.0,              | 6 mg/kg       | 91.5                                  | 22                  | 113        |
| ELO/J(Jim). Dibeliz(a.li)alitiliacelle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 00000                       | ) L         | D. 18 | )<br>(            | By Burn       |                                       | 1 6                 | 5 6        |
| EP075(SIM): Fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 206-44-0                    | G. 0        | mg/kg | v. 0              | o mg/kg       | 91.5                                  | 1 6                 | 123        |
| EP075(SIM): Fluorene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 80-73-7                     | 0.5         | mg/kg | 6.05              | o mg/kg       | 93.5                                  | ),                  | 123        |
| EP075(SIM): Indeno(1.2.3.cd)pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 193-39-5                    | 0.5         | mg/kg | <0.5              | 6 mg/kg       | 90.2                                  | 71                  | 113        |
| EP075(SIM): Naphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 91-20-3                     | 0.5         | mg/kg | <0.5              | 6 mg/kg       | 97.0                                  | 80                  | 124        |
| EP075(SIM): Phenanthrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 85-01-8                     | 0.5         | mg/kg | <0.5              | 6 mg/kg       | 9.66                                  | 62                  | 123        |
| EP075(SIM): Pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 129-00-0                    | 0.5         | mg/kg | <0.5              | 6 mg/kg       | 94.5                                  | 79                  | 125        |
| EP080/071: Total Petroleum Hydrocarbons (QCLot: 101728)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 28)                         |             |       |                   |               |                                       |                     |            |
| EP080: C6 - C9 Fraction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                           | 10          | mg/kg | <10               | 26 mg/kg      | 117                                   | 89                  | 128        |
| EP080/071: Total Petroleum Hydrocarbons (QCLot: 101744)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 44)                         |             |       |                   |               |                                       |                     |            |
| EP071: C10 - C14 Fraction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                           | 50          | mg/kg | <50               | 200 mg/kg     | 106                                   | 71                  | 131        |
| EP071: C15 - C28 Fraction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                             | 100         | mg/kg | <100              | 250 mg/kg     | 116                                   | 74                  | 138        |
| EP071: C29 - C36 Fraction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                           | 100         | mg/kg | <100              | 200 mg/kg     | 106                                   | 64                  | 128        |
| EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions (QCLot: 101728)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3 Fractions (QCL            | ot: 101728) |       |                   |               |                                       |                     |            |
| EP080: C6 - C10 Fraction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C6_C10                      | 10          | mg/kg | <10               | 31 mg/kg      | 110                                   | 89                  | 128        |
| EP080/071: Total Recoverable Hydrocarbons - NEPM 2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3 Fractions (QCLot: 101744) | ot: 101744) |       |                   |               |                                       |                     |            |
| EP071: >C10 - C16 Fraction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | >C10_C16                    | 50          | mg/kg | <50               | 250 mg/kg     | 108                                   | 70                  | 130        |
| EP071: >C16 - C34 Fraction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                           | 100         | mg/kg | <100              | 350 mg/kg     | 116                                   | 74                  | 138        |
| EP071: >C34 - C40 Fraction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                           | 100         | mg/kg | <100              | 200 mg/kg     | 90.3                                  | 63                  | 131        |
| EP080: BTEXN (QCLot: 101728)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                             |             |       |                   |               |                                       |                     |            |
| EP080: Benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 71-43-2                     | 0.2         | mg/kg | <0.2              | 1 mg/kg       | 103                                   | 62                  | 116        |
| EP080: Ethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 100-41-4                    | 0.5         | mg/kg | <0.5              | 1 mg/kg       | 98.1                                  | 58                  | 118        |
| EP080: meta- & para-Xylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 108-38-3                    | 0.5         | mg/kg | <0.5              | 2 mg/kg       | 9.66                                  | 09                  | 120        |
| EP080: Naphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 91-20-3                     | ~           | mg/kg | ₹                 | 1 mg/kg       | 107                                   | 62                  | 138        |
| EP080: ortho-Xylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 95-47-6                     | 0.5         | mg/kg | <0.5              | 1 mg/kg       | 102                                   | 09                  | 120        |
| EP080: Toluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 108-88-3                    | 0.5         | mg/kg | <0.5              | 1 mg/kg       | 102                                   | 62                  | 128        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |             |       |                   |               |                                       |                     |            |



ES1522077 PARSONS BRINCKERHOFF AUST P/L 2201679B\_AS SYD WATER

Page Work Order

Client Project

| Suo-Matrix: SOIL                                               |                                        |            | M             | Matrix Spike (MS) Report | l.                  |           |
|----------------------------------------------------------------|----------------------------------------|------------|---------------|--------------------------|---------------------|-----------|
|                                                                |                                        |            | Spike         | SpikeRecovery(%)         | Recovery Limits (%) | imits (%) |
| Laboratory sample ID Client sample ID                          | Method: Compound                       | CAS Number | Concentration | MS                       | Low                 | High      |
| EG005T: Total Metals by ICP-AES (QCLot: 104780)                |                                        |            |               |                          |                     |           |
| ES1522014-002 Anonymous                                        | EG005T: Arsenic                        | 7440-38-2  | 50 mg/kg      | 97.1                     | 70                  | 130       |
|                                                                | EG005T: Cadmium                        | 7440-43-9  | 50 mg/kg      | 90.4                     | 70                  | 130       |
|                                                                | EG005T: Chromium                       | 7440-47-3  | 50 mg/kg      | 96.4                     | 20                  | 130       |
|                                                                | EG005T: Copper                         | 7440-50-8  | 250 mg/kg     | 107                      | 70                  | 130       |
|                                                                | EG005T: Lead                           | 7439-92-1  | 250 mg/kg     | 93.5                     | 70                  | 130       |
|                                                                | EG005T: Nickel                         | 7440-02-0  | 50 mg/kg      | 8.96                     | 20                  | 130       |
|                                                                | EG005T: Zinc                           | 7440-66-6  | 250 mg/kg     | 91.7                     | 70                  | 130       |
| EG035T: Total Recoverable Mercury by FIMS (QCLot: 104781)      |                                        |            |               |                          |                     |           |
| ES1522014-002 Anonymous                                        | EG035T: Mercury                        | 7439-97-6  | 5 mg/kg       | 101                      | 20                  | 130       |
| EP066: Polychlorinated Biphenyls (PCB) (QCLot: 101746)         |                                        |            |               |                          |                     |           |
| ES1522075-001 Anonymous                                        | EP066: Total Polychlorinated biphenyls | -          | 1 mg/kg       | 91.0                     | 70                  | 130       |
| EP068A: Organochlorine Pesticides (OC) (QCLot: 101747)         |                                        |            |               |                          |                     |           |
| ES1522075-001 Anonymous                                        | EP068: 4.4`-DDT                        | 50-29-3    | 2 mg/kg       | 87.8                     | 70                  | 130       |
|                                                                | EP068: Aldrin                          | 309-00-2   | 0.5 mg/kg     | 85.8                     | 70                  | 130       |
|                                                                | EP068: Dieldrin                        | 60-57-1    | 0.5 mg/kg     | 80.9                     | 02                  | 130       |
|                                                                | EP068: Endrin                          | 72-20-8    | 2 mg/kg       | 6.06                     | 70                  | 130       |
|                                                                | EP068: gamma-BHC                       | 58-89-9    | 0.5 mg/kg     | 82.4                     | 70                  | 130       |
|                                                                | EP068: Heptachlor                      | 76-44-8    | 0.5 mg/kg     | 84.0                     | 20                  | 130       |
| EP068B: Organophosphorus Pesticides (OP) (QCLot: 101747)       |                                        |            |               |                          |                     |           |
| ES1522075-001 Anonymous                                        | EP068: Bromophos-ethyl                 | 4824-78-6  | 0.5 mg/kg     | 6.98                     | 20                  | 130       |
|                                                                | EP068: Chlorpyrifos-methyl             | 5598-13-0  | 0.5 mg/kg     | 78.7                     | 20                  | 130       |
|                                                                | EP068: Diazinon                        | 333-41-5   | 0.5 mg/kg     | 91.5                     | 70                  | 130       |
|                                                                | EP068: Pirimphos-ethyl                 | 23505-41-1 | 0.5 mg/kg     | 84.6                     | 70                  | 130       |
|                                                                | EP068: Prothiofos                      | 34643-46-4 | 0.5 mg/kg     | 89.7                     | 70                  | 130       |
| EP075(SIM)B: Polynuclear Aromatic Hydrocarbons (QCLot: 101734) |                                        |            |               |                          |                     |           |
| ES1522039-021 Anonymous                                        | EP075(SIM): Acenaphthene               | 83-32-9    | 10 mg/kg      | 84.7                     | 20                  | 130       |
|                                                                | EP075(SIM): Pyrene                     | 129-00-0   | 10 mg/kg      | 86.3                     | 02                  | 130       |
| EP075(SIM)B: Polynuclear Aromatic Hydrocarbons (QCLot: 101745) |                                        |            |               |                          |                     |           |
| ES1522075-001 Anonymous                                        | EP075(SIM): Acenaphthene               | 83-32-9    | 10 mg/kg      | 96.3                     | 20                  | 130       |
|                                                                | EP075(SIM): Pyrene                     | 129-00-0   | 10 mg/kg      | 97.8                     | 70                  | 130       |
| EP080/071: Total Petroleum Hydrocarbons (QCLot: 101728)        |                                        |            |               |                          |                     |           |
| ES1522024-002 Anonymous                                        | EP080: C6 - C9 Fraction                | -          | 32.5 mg/kg    | 115                      | 70                  | 130       |
| EP080/071: Total Petroleum Hydrocarbons (QCLot: 101744)        |                                        |            |               |                          |                     |           |
| ES1522075-001 Anonymous                                        | EP071: C10 - C14 Fraction              | 1          | 523 mg/kg     | 103                      | 73                  | 137       |
|                                                                | EP071: C15 - C28 Fraction              |            | 2319 mg/kg    | 104                      | 53                  | 131       |



: 11 of 11 : ES1522077 : PARSONS BRINCKERHOFF AUST P/L

Page Work Order

| 7/2 - 502   |                       |
|-------------|-----------------------|
| DUNGVERSION | 2201679B_AS SYD WATER |
|             | 2201679B              |
|             |                       |

Project Client

| Sub-Matrix: SOIL             |                                                                                 |                            |            | Mat           | Matrix Spike (MS) Report |                     |          |
|------------------------------|---------------------------------------------------------------------------------|----------------------------|------------|---------------|--------------------------|---------------------|----------|
|                              |                                                                                 |                            |            | Spike         | SpikeRecovery(%)         | Recovery Limits (%) | mits (%) |
| Laboratory sample ID         | Client sample ID                                                                | Method: Compound           | CAS Number | Concentration | MS                       | Low                 | High     |
| EP080/071: Total             | EP080/071: Total Petroleum Hydrocarbons (QCLot: 101744) - continued             |                            |            |               |                          |                     |          |
| ES1522075-001                | Anonymous                                                                       | EP071: C29 - C36 Fraction  |            | 1714 mg/kg    | 125                      | 52                  | 132      |
| EP080/071: Total             | EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions (QCLot: 101728) | ot: 101728)                |            |               |                          |                     |          |
| ES1522024-002                | Anonymous                                                                       | EP080: C6 - C10 Fraction   | C6_C10     | 37.5 mg/kg    | 109                      | 70                  | 130      |
| EP080/071: Total             | EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions (QCLot: 101744) | ot: 101744)                |            |               |                          |                     |          |
| ES1522075-001                | Anonymous                                                                       | EP071: >C10 - C16 Fraction | >C10_C16   | 860 mg/kg     | 98.3                     | 73                  | 137      |
|                              |                                                                                 | EP071: >C16 - C34 Fraction |            | 3223 mg/kg    | 122                      | 53                  | 131      |
|                              |                                                                                 | EP071: >C34 - C40 Fraction |            | 1058 mg/kg    | 112                      | 52                  | 132      |
| EP080: BTEXN (QCLot: 101728) | 2CLot: 101728)                                                                  |                            |            |               |                          |                     |          |
| ES1522024-002                | Anonymous                                                                       | EP080: Benzene             | 71-43-2    | 2.5 mg/kg     | 101                      | 70                  | 130      |
|                              |                                                                                 | EP080: Ethylbenzene        | 100-41-4   | 2.5 mg/kg     | 100                      | 70                  | 130      |
|                              |                                                                                 | EP080: meta- & para-Xylene | 108-38-3   | 2.5 mg/kg     | 0.86                     | 70                  | 130      |
|                              |                                                                                 |                            | 106-42-3   |               |                          |                     |          |
|                              |                                                                                 | EP080: Naphthalene         | 91-20-3    | 2.5 mg/kg     | 8.06                     | 70                  | 130      |
|                              |                                                                                 | EP080: ortho-Xylene        | 95-47-6    | 2.5 mg/kg     | 101                      | 70                  | 130      |
|                              |                                                                                 | EP080: Toluene             | 108-88-3   | 2.5 mg/kg     | 8.96                     | 70                  | 130      |
|                              |                                                                                 |                            |            |               |                          |                     |          |



# QA/QC Compliance Assessment for DQO Reporting

| : <b>ES1522077</b> | : PARSONS BRINCKERHOFF AUST P/L Laboratory : Environmental Division Sydney | : MR DAN ROBINSON : +61-2-8784 8555 | : 2201679B_AS SYD WATER : 15-May-2015 | : ASHFIELD : 22-May-2015 | · No. of samples received : 2 | er : No. of samples analysed : 2 |
|--------------------|----------------------------------------------------------------------------|-------------------------------------|---------------------------------------|--------------------------|-------------------------------|----------------------------------|
| Work Order         | Client                                                                     | Contact                             | Project                               | Site                     | Sampler                       | Order number                     |

reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

### Summary of Outliers

### **Outliers: Quality Control Samples**

This report highlights outliers flagged in the Quality Control (QC) Report.

- Mo Method Blank value outliers occur.
- NO Duplicate outliers occur.
- Mo Laboratory Control outliers occur.
- NO Matrix Spike outliers occur.
- For all regular sample matrices, NO surrogate recovery outliers occur.

## Outliers: Analysis Holding Time Compliance

NO Analysis Holding Time Outliers exist.

## Outliers: Frequency of Quality Control Samples

MO Quality Control Sample Frequency Outliers exist.



ES1522077 Work Order Project Client

PARSONS BRINCKERHOFF AUST P/L 2201679B\_AS SYD WATER

## **Analysis Holding Time Compliance**

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

organics Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters. Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: SOIL

| Matrix: SOIL                                          |          |             |                |                          | Evaluation | × = Holding time | Evaluation: $\times$ = Holding time breach; $\checkmark$ = Within holding time. | holding time. |
|-------------------------------------------------------|----------|-------------|----------------|--------------------------|------------|------------------|---------------------------------------------------------------------------------|---------------|
| Method                                                |          | Sample Date | Ext            | Extraction / Preparation |            |                  | Analysis                                                                        |               |
| Container / Client Sample ID(s)                       |          |             | Date extracted | Due for extraction       | Evaluation | Date analysed    | Due for analysis                                                                | Evaluation    |
| EA055: Moisture Content                               |          |             |                |                          |            |                  |                                                                                 |               |
| Soil Glass Jar - Unpreserved (EA055-103)<br>DUP1A AS, | DUP2A AS | 14-May-2015 |                |                          | 1          | 20-May-2015      | 28-May-2015                                                                     | >             |
| EG005T: Total Metals by ICP-AES                       |          |             |                |                          |            |                  |                                                                                 |               |
| Soil Glass Jar - Unpreserved (EG005T)<br>DUP1A AS,    | DUP2A AS | 14-May-2015 | 21-May-2015    | 10-Nov-2015              | >          | 22-May-2015      | 10-Nov-2015                                                                     | >             |
| EG035T: Total Recoverable Mercury by FIMS             |          |             |                |                          |            |                  |                                                                                 |               |
| Soil Glass Jar - Unpreserved (EG035T)<br>DUP1A AS,    | DUP2A AS | 14-May-2015 | 21-May-2015    | 11-Jun-2015              | >          | 22-May-2015      | 11-Jun-2015                                                                     | >             |
| EP066: Polychlorinated Biphenyls (PCB)                |          |             |                |                          |            |                  |                                                                                 |               |
| Soil Glass Jar - Unpreserved (EP066)<br>DUP1A AS      |          | 14-May-2015 | 18-May-2015    | 28-May-2015              | >          | 20-May-2015      | 27-Jun-2015                                                                     | >             |
| EP068A: Organochlorine Pesticides (OC)                |          |             |                |                          |            |                  |                                                                                 |               |
| Soil Glass Jar - Unpreserved (EP068)<br>DUP1A AS      |          | 14-May-2015 | 18-May-2015    | 28-May-2015              | >          | 20-May-2015      | 27-Jun-2015                                                                     | >             |
| EP080/071: Total Petroleum Hydrocarbons               |          |             |                |                          |            |                  |                                                                                 |               |
| Soil Glass Jar - Unpreserved (EP071)<br>DUP1A AS      |          | 14-May-2015 | 18-May-2015    | 28-May-2015              | >          | 20-May-2015      | 27-Jun-2015                                                                     | >             |
| EP075(SIM)B: Polynuclear Aromatic Hydrocarbons        |          |             |                |                          |            |                  |                                                                                 |               |
| Soil Glass Jar - Unpreserved (EP075(SIM)) DUP2A AS    |          | 14-May-2015 | 18-May-2015    | 28-May-2015              | >          | 19-May-2015      | 27-Jun-2015                                                                     | >             |
| Soil Glass Jar - Unpreserved (EP075(SIM))<br>DUP1A AS |          | 14-May-2015 | 18-May-2015    | 28-May-2015              | >          | 20-May-2015      | 27-Jun-2015                                                                     | >             |
| EP080/071: Total Petroleum Hydrocarbons               |          |             |                |                          |            |                  |                                                                                 |               |
| Soil Glass Jar - Unpreserved (EP080)<br>DUP1A AS      |          | 14-May-2015 | 18-May-2015    | 28-May-2015              | `          | 20-May-2015      | 28-May-2015                                                                     | >             |
|                                                       |          |             |                |                          |            |                  |                                                                                 |               |



PARSONS BRINCKERHOFF AUST P/L 2201679B\_AS SYD WATER 3 of 4 ES1522077 Work Order Project Client

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to

the expected rate. A listing of breaches is provided in the Summary of Outliers.

| Listing Common Type              |            | Ċ  | 7       |        | 1/0/ -1-0 |             |                                                   |
|----------------------------------|------------|----|---------|--------|-----------|-------------|---------------------------------------------------|
| duality control cample Type      |            | ٦  | ount    |        | Kare (%)  | 9           | Quality Control Specification                     |
| Analytical Methods               | Method     | 00 | Reaular | Actual | Expected  | Evaluation  |                                                   |
| -aboratory Duplicates (DUP)      |            |    |         |        |           |             |                                                   |
| Moisture Content                 | EA055-103  | 2  | 20      | 10.00  | 10.00     | >           | NEPM 2013 Schedule B(3) and ALS QCS3 requirement  |
| PAH/Phenols (SIM)                | EP075(SIM) | 2  | 19      | 10.53  | 10.00     | >           | NEPM 2013 Schedule B(3) and ALS QCS3 requirement  |
| Pesticides by GCMS               | EP068      | _  | ဇ       | 33.33  | 10.00     | >           | NEPM 2013 Schedule B(3) and ALS QCS3 requirement  |
| Polychlorinated Biphenyls (PCB)  | EP066      | _  | 4       | 25.00  | 10.00     | >           | NEPM 2013 Schedule B(3) and ALS QCS3 requirement  |
| Fotal Mercury by FIMS            | EG035T     | 2  | 20      | 10.00  | 10.00     | >           | NEPM 2013 Schedule B(3) and ALS QCS3 requirement  |
| Total Metals by ICP-AES          | EG005T     | 2  | 20      | 10.00  | 10.00     | >           | NEPM 2013 Schedule B(3) and ALS QCS3 requirement  |
| FRH - Semivolatile Fraction      | EP071      | _  | 4       | 25.00  | 10.00     | >           | NEPM 2013 Schedule B(3) and ALS QCS3 requirement  |
| TRH Volatiles/BTEX               | EP080      | 2  | 18      | 11.11  | 10.00     | >           | NEPM 2013 Schedule B(3) and ALS QCS3 requirement  |
| Laboratory Control Samples (LCS) |            |    |         |        |           |             |                                                   |
| PAH/Phenols (SIM)                | EP075(SIM) | _  | 19      | 5.26   | 5.00      | >           | NEPM 2013 Schedule B(3) and ALS QCS3 requirement  |
| Pesticides by GCMS               | EP068      | _  | က       | 33.33  | 5.00      | >           | NEPM 2013 Schedule B(3) and ALS QCS3 requirement  |
| Polychlorinated Biphenyls (PCB)  | EP066      | _  | 4       | 25.00  | 2.00      | >           | NEPM 2013 Schedule B(3) and ALS QCS3 requirement  |
| Total Mercury by FIMS            | EG035T     | -  | 20      | 9.00   | 2.00      | >           | NEPM 2013 Schedule B(3) and ALS QCS3 requirement  |
| Total Metals by ICP-AES          | EG005T     | _  | 20      | 2.00   | 5.00      | >           | NEPM 2013 Schedule B(3) and ALS QCS3 requirement  |
| TRH - Semivolatile Fraction      | EP071      | _  | 4       | 25.00  | 2.00      | >           | NEPM 2013 Schedule B(3) and ALS QCS3 requirement  |
| TRH Volatiles/BTEX               | EP080      | _  | 18      | 5.56   | 5.00      | >           | NEPM 2013 Schedule B(3) and ALS QCS3 requirement  |
| Method Blanks (MB)               |            |    |         |        |           |             |                                                   |
| PAH/Phenols (SIM)                | EP075(SIM) | _  | 19      | 5.26   | 2.00      | >           | NEPM 2013 Schedule B(3) and ALS QCS3 requirement  |
| Pesticides by GCMS               | EP068      | _  | 3       | 33.33  | 5.00      | >           | NEPM 2013 Schedule B(3) and ALS QCS3 requirement  |
| Polychlorinated Biphenyls (PCB)  | EP066      | _  | 4       | 25.00  | 5.00      | >           | NEPM 2013 Schedule B(3) and ALS QCS3 requirement  |
| Total Mercury by FIMS            | EG035T     | -  | 20      | 2.00   | 5.00      | >           | NEPM 2013 Schedule B(3) and ALS QCS3 requirement  |
| Total Metals by ICP-AES          | EG005T     | _  | 20      | 5.00   | 5.00      | >           | NEPM 2013 Schedule B(3) and ALS QCS3 requirement  |
| FRH - Semivolatile Fraction      | EP071      | _  | 4       | 25.00  | 2.00      | >           | NEPM 2013 Schedule B(3) and ALS QCS3 requirement  |
| TRH Volatiles/BTEX               | EP080      | _  | 18      | 5.56   | 5.00      | >           | NEPM 2013 Schedule B(3) and ALS QCS3 requirement  |
| Matrix Spikes (MS)               |            |    |         |        |           |             |                                                   |
| PAH/Phenols (SIM)                | EP075(SIM) | _  | 19      | 5.26   | 5.00      | >           | NEPM 2013 Schedule B(3) and ALS QCS3 requirement  |
| Pesticides by GCMS               | EP068      | _  | က       | 33.33  | 2.00      | >           | NEPM 2013 Schedule B(3) and ALS QCS3 requirement  |
| Polychlorinated Biphenyls (PCB)  | EP066      | _  | 4       | 25.00  | 5.00      | >           | NEPM 2013 Schedule B(3) and ALS QCS3 requirement  |
| Total Mercury by FIMS            | EG035T     | _  | 20      | 2.00   | 5.00      | >           | NEPM 2013 Schedule B(3) and ALS QCS3 requirement  |
| Total Metals by ICP-AES          | EG005T     | 1  | 20      | 5.00   | 5.00      | <b>&gt;</b> |                                                   |
| TRH - Semivolatile Fraction      | EP071      | -  | 4       | 25.00  | 2.00      | >           | NEPM 2013 Schedule B(3) and ALS QCS3 requirement  |
| TRH Volatilas/RTEX               | FPORO      | _  | 2,      | 25     | 00.5      |             | NEPM 2013 Schoolile B(3) and ALS OCS3 requirement |



 Page
 : 4 of 4

 Work Order
 : ES1522077

 Client
 : PARSONS BRINCKERHOFF AUST P/L

 Project
 : 2201679B\_AS SYD WATER

**Brief Method Summaries** 

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

| Analytical Methods                                | Method     | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|---------------------------------------------------|------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Moisture Content                                  | EA055-103  | SOIL   | In-house. A gravimetric procedure based on weight loss over a 12 hour drying period at 103-105 degrees C. This method is compliant with NEPM (2013) Schedule B(3) Section 7.1 and Table 1 (14 day holding time).                                                                                                                                                                                                                                                                                 |
| Total Metals by ICP-AES                           | EG005T     | SOIL   | In house: Referenced to APHA 3120; USEPA SW 846 - 6010. Metals are determined following an appropriate acid digestion of the soil. The ICPAES technique ionises samples in a plasma, emitting a characteristic spectrum based on metals present. Intensities at selected wavelengths are compared against those of matrix matched standards. This method is compliant with NEPM (2013) Schedule B(3)                                                                                             |
| Total Mercury by FIMS                             | EG035T     | SOIL   | In house: Referenced to AS 3550, APHA 3112 Hg - B (Flow-injection (SnCI2)(Cold Vapour generation) AAS) FIM-AAS is an automated flameless atomic absorption technique. Mercury in solids are determined following an appropriate acid digestion. Ionic mercury is reduced online to atomic mercury vapour by SnCI2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM (2013) Schedule B(3) |
| Polychlorinated Biphenyls (PCB)                   | EP066      | SOIL   | (USEPA SW 846 - 8270B) Extracts are analysed by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (2013) Schedule B(3) (Method 504)                                                                                                                                                                                                                                                                       |
| Pesticides by GCMS                                | EP068      | SOIL   | (USEPA SW 846 - 8270B) Extracts are analysed by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. This technique is compliant with NEPM (2013) Schedule B(3) (Method 504,505)                                                                                                                                                                                                                                                                |
| TRH - Semivolatile Fraction                       | EP071      | SOIL   | (USEPA SW 846 - 8015A) Sample extracts are analysed by Capillary GC/FID and quantified against alkane standards over the range C10 - C40.                                                                                                                                                                                                                                                                                                                                                        |
| PAH/Phenols (SIM)                                 | EP075(SIM) | SOIL   | (USEPA SW 846 - 8270B) Extracts are analysed by Capillary GC/MS in Selective Ion Mode (SIM) and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (2013) Schedule B(3) (Method 502 and 507)                                                                                                                                                                                                                                   |
| TRH Volatiles/BTEX                                | EP080      | SOIL   | (USEPA SW 846 - 8260B) Extracts are analysed by Purge and Trap, Capillary GC/MS. Quantification is by comparison against an established 5 point calibration curve.                                                                                                                                                                                                                                                                                                                               |
| Preparation Methods                               | Method     | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Methanolic Extraction of Soils for Purge and Trap | * ORG16    | SOIL   | (USEPA SW 846 - 5030A) 5g of solid is shaken with surrogate and 10mL methanol prior to analysis by Purge and Trap - GC/MS.                                                                                                                                                                                                                                                                                                                                                                       |
| Tumbler Extraction of Solids                      | ORG17      | SOIL   | In-house, Mechanical agitation (tumbler). 10g of sample, Na2SO4 and surrogate are extracted with 30mL 1:1 DCM/Acetone by end over end tumble. The solvent is decanted, dehydrated and concentrated (by KD) to the desired volume for analysis.                                                                                                                                                                                                                                                   |